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Abstract 

In this paper, we outline our strategy for solving the third contest presented by the TJ National 

Machine Learning Open (NMLO). The third contest of the TJ NMLO requires competitors to 

predict the number of COVID-19 cases in a U.S. county given demographic data such as 

population, education, and income. We achieved a Mean Square Error (mse) of 2154.994 using 

random forest classifier. Next, we go over experimental data analysis (EDA), preprocessing, 

modeling, and testing.   

 

1 Data 

We looked at the data to understand what we were working with and to see which variables 

could be important which we could drop/engineer. According to the description, there are 4000 

rows (regions of COVID-19) and 4 columns, details about each case. The column features 



include education (ed), income (inc), population (pop), and cases. We start to explore the data by 

looking at the raw data and some datatypes. 

 

Table 1: First five rows of the data 

 

Figure 1: Datatypes 

 

 



1.1 Data Cleaning  

 

The first thing we did was to check for missing values and the type of each variable of 

each case analysis. Figure 1 found that there were 0 missing values and the variable types were 

either int 64 or floats . Thus, we did not have to any data imputation nor one hot encoding since 

there were no categorical variables. Next, we dropped all duplicate values in the dataset since 

there is no effect with training.  

2 Experimental Data Analysis 

We started off by exploring the distribution of cases. We used matplotlib to graph the 

values. 

 

 

 

Figure 2: Distribution of Number COVID Cases According to Index Value 



The data looks a bit hard to follow, so we rearranged the values from least to greatest, then 

plotted the data again. 

 

Figure 3: Distribution of Number COVID Cases (Ordered) 

Figure 3 shows the plot of COVID-19 cases, we can see that this plot is not linear at all. This 

means the data is not linear. We were hoping to use Linear Regression to solve this problem. 

Because of this, we needed to transform the data to make it follow a linear distribution. Before 

we did this, we looked at the other variables. 

 



 

Figure 4: Distribution Plot for Education 

 

Figure 5: Distribution Plot for Population                       Figure 6: Distribution Plot for Income 

We can see that none of the variables follow any sort of distribution. Population (pop) looks a bit 

linear, but we needed to investigate that a bit more. Next, we looked at the correlations of the 

data 



 

Figure 7: Correlation Heatmap 

3 Preprocessing 

 

Before modeling, we intended on normalizing our data, so that it could be linear. The 

purpose of this is to make modeling more effective. The model would fit straight across without 

missing portions of the data. Our first step to achieving this was to scale the data. We use 

Standard Scaler from Sklearn. 

 

 



 

 

 

 

 

Moving on, we took all the features one by one, and started to normalize the distributions. We 

essentially logged all of the data using np.log(). Here you can see the before and after of the 

distributions. We started off with cases. 

 



 

Figure 8: Cases Distribution Before Logarithmic Transformation 

 

 

 

Figure 9: Case Distribution After Logarithmic Transformation 



 

You can see after logging the parameter, the line fits better linearly. We went and did this to 

every single feature.  

 

 

Figure 10: Education Distribution Before and After Logarithmic Transformation 



 

Figure 11: Income Distribution Before and After Logarithmic Transformation 

 

Figure 12: Population Distribution Before and After Logarithmic Transformation 

Now since everything is linear, things matched up together. Take population on cases for 

example. 



 

Figure 13: Population on Number of COVID-19 Cases 

 

 

4 Modeling 

Now that our data was prepared, we went on to modeling. We planned to try many models 

such as lasso regression, Gradient Boost, and more. Our best scores were achieved by Gradient 

Boost.  First imports:

 



 

 

We created a function to test our models. 

 

And finally, our results. 

 



 

 

 

5 Final Thoughts 

We initially got 3rd place on the public leaderboard, but then we dropped to 17th place on 

the private leaderboard. I believe this is because we overfitted a bit with our predictions. 

Everyone also did better on the private leaderboard which we did not expect. Overall, we thought 

that this competition was great especially in our status quo of COVID-19. We thought this 

competition gave us a good viewpoint on how we, even as high schoolers, can make a difference 

to solve relevant problems. 

 


