Convolutional Networks Quiz Answer the questions in the spaces provided.

Name and Grade:

1. (3 points) Calculate the convolution:

3	2	4	2			
5	8	4	4		2	2
6	5	5	2	*	2	2
1	1	7	2		L	_

- (a) Assuming stride length of 1
- (b) Assuming stride length of 2
- (c) With zero padding P = 1 around the input matrix and stride length of 1.

2. (2 points) The following represents the input of a pooling layer. Find the output for the following types of pooling layers.

[1	2	1	1
5	3	6	0
3	6	7	2
$\lfloor 2$	2	8	2

(a) A 2×2 max-pooling layer

(b) A 2×2 average-pooling layer

- 3. (6 points) A Convolutional layer has input volume $W_1 \times H_1 \times D_1$, number of filters K, filter size F, stride length S, and amount of zero padding P. The output is a volume of size $W_2 \times H_2 \times D_2$. Find expressions for the output volume dimensions in terms of W_1, H_1, D_1, K, F, S and P.
 - (a) $W_2 =$
 - (b) $H_2 =$
 - (c) $D_2 =$

- 4. (6 points) A Pooling layer has input volume $W_1 \times H_1 \times D_1$, filter size F, and stride length S. The output is a volume of size $W_2 \times H_2 \times D_2$. Find expressions for the output volume dimensions in terms of W_1, H_1, D_1, F and S.
 - (a) $W_2 =$
 - (b) $H_2 =$
 - (c) $D_2 =$

- 5. (7 points) Match the data format with correct the data type. Some data types may not be used, and some may be used more than once.
 - A. 1-D Single channelB. 1-D MultichannelC. 2-D Single channelD. 2-D MultichannelE. 3-D Single channelF. 3-D Multichannel
 - 1. Audio preprocessed with Fourier transform
 - 2. Grayscale Image
 - 3. Audio Waveform
 - 4. Color image
 - 5. Color video
 - 6. Grayscale Video
 - 7. Volumetric Data (MRI, CT scan)
- 6. (3 points) What are the advantages of the ReLU activation function, $y = \max(0, x)$? Select all that apply.
 - (a) ReLU is differentiable for all real numbers
 - (b) ReLU has a computationally cheap derivative
 - (c) ReLU tells you how far away you are from the correct value based on the magnitude of x
 - (d) ReLU helps alleviate the vanishing gradient issue of Sigmoid functions
 - (e) ReLU is linear/constant, so it is faster to compute derivatives than the step function