
Fully Convolutional Networks

Nikhil Sardana

December 2017

1 Introduction

A traditional convolutional network has multiple convolutional layers, each followed by pooling layer(s), and
a few fully connected layers at the end. These standard CNNs are used primarily for image classification.
This lecture covers Fully Convolutional Networks (FCNs), which differ in that they do not contain any fully
connected layers. This lecture is intended for readers with understanding of traditional CNNs. We will
explore the structure and purpose of FCNs, along with their application to semantic segmentation.

2 Semantic Segmentation

We’ve previously covered classification (without localization). Later lectures will cover object detection and
instance segmentation. The main difference between semantic segmentation and instance segmentation is
that we make no distinction between the instances of a particular class in semantic segmentation. We simply
wish to classify every single pixel.

How can we adapt convolutional networks to classify every single pixel? Clearly, we could take a small
crop of the original image centered around a pixel, use the central pixel’s class as the ground truth of the crop,
and run the crop through a CNN. However, we would need a crop for every single pixel in an image, and this
would be hopelessly slow. What if we could classify every single pixel at once? Enter Fully Convolutional
Networks.

3 Network Architecture

What if we just remove the pooling layers and fully connected layers from a convolutional network? Then,
at the end, we could have a layer with depth C, where C is the number of classes. We can choose a filter
size and stride length to maintain our original image width W and height H throughout the entire network,
so we could simply make our loss function a sum of the cross-entropy loss for each pixel (remember, we are
essentially performing classification for each pixel). Refer to the diagram below for a visual representation
of this network.

1



Obviously, this network will run far quicker than simply classifying each pixel individually. However, it is
still too computationally expensive. Using the original input image size throughout the entire network would
be extremely expensive (especially for deep networks). Thus, we need a way to downsample the image (just
like in a standard convolutional network), and then, upsample the layers back to the original image size.

The above diagram shows a fully convolutional network. The first half is identical to the Convolu-
tional/Pooling layer structure that makes up most of traditional CNN architecture. Through pooling and
strided convolutions, we reduce the size of each layer, reducing computation. However, instead of having
fully connected layers (which are at the end of normal CNNs), we have 1 × 1 convolutional layers.

3.1 1×1 Convolutions

It is important to realize that 1×1 convolutional layers are actually the same thing as fully connected layers.
Think about it. In the traditional CNN below, how exactly do we get from the 5 × 5 layer to the first fully
connected layer?

It’s simple! The first fully connected layer is simply a convolutional layer with a 5 × 5 kernel. If it’s still

2



unclear, here’s an example with numbers:
1 2 3 1 3
4 5 6 1 2
7 8 9 1 4
2 1 3 5 4
2 4 2 1 1

 ∗


2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2
2 2 2 2 2

 =
[
164
]

That single number, 164, would become the value of a single neuron in the first fully connected layer.
For each 5 × 5 feature map, we have a 5 × 5 kernel, and generate a neuron in the first fully connected layer.
You can think of all the other fully connected layers as just stacks of 1 × 1 convolutions (with 1 × 1 kernels,
obviously).

Of course, you ask, if fully connected layers are simply 1 × 1 convolutional layers, then why don’t all
CNNs just use 1 × 1 convolutional layers at the end, instead of fully connected layers?

Simply put, newer networks do. Sometimes, older networks like VGG16 have their fully connected layers
reimplemented as conv layers (see SSD). Any MLP can be reimplemented as a CNN. For example, a standard
NN with n inputs is also a convolutional network with an input of a single pixel, and n input channels.

There is, however, one very important difference between a fully convolutional network and a standard
CNN. Consider the standard convolutional network above. Note how a fully connected layer expects an
input of a particular size. This restricts our input image to a fixed size. A fully convolutional network has
no such issues. Since no fully connected layers exist, our input can be of any size.

3.2 Unpooling

We now understand the first half of the network (including the 1 × 1 convolutional layers). The question
remains: How do we increase layer size to reach the dimensions of the original input? One way we can
upsample is by unpooling.

There are multiple approaches to unpooling. One approach is “Nearest Neighbor”, we simply repeat
every element. “Bed of Nails” unpooling simply places the value in a particular position in the output,
filling the rest with zeros. The above example places the input values in the upper left corner.

3



Max Unpooling is a smarter “bed of nails” method. Rather than a predetermined, fixed location for the
“nails”, we use the position of the maximum elements from the corresponding max pooling layer earlier in
the network. This works because Fully Convolutional Networks are often symmetric, and each convolutional
and pooling layer corresponds to a transposed convolution (also called deconvolution) and unpooling layer.

3.3 Transposed Convolution

Strided convolutions allow us to decrease layer size in a learnable fashion. Pooling is a fixed function,
however, we learn the weights of a convolutional layer, and thus a strided convolution is more powerful than
a pooling layer. Strided convolutions are to pooling layers what transposed convolutions are to unpooling
layers.

You will often hear transposed convolution referred to as deconvolution. Deconvolution suggests the
opposite of convolution, however, a transposed convolution is simply a normal convolution operation, albeit
with special padding.

Figure 1: Normal Convolution

Figure 2: Transposed convolution.

In the figure above left, we get from a 5 × 5 layer (blue) to a 2 × 2 layer (green) by performing a
convolution with filter size 3, and stride 2. With some fancy padding in the transposed convolution, we
achieve the opposite: 2 × 2 to 5 × 5. Thus, transpose convolutions allow us to increase our layer size in a
learnable fashion, since we can change the weights through backpropagation.

We can clearly see that we will not end up with our original 5 × 5 values if we perform the normal con-
volution, and then the transpose convolution. The transpose convolution is not the inverse of a convolution,
and thus deconvolution is a terrible name for the operation.

Now we have covered both ends of the Fully Convolutional Network. We begin with a standard CNN,
and use strided convolutions and pooling to downsample from the original image. Then, we upsample using
unpooling and transposed convolutions. Finally, we end up with a C ×H ×W layer, where C is the number
of classes, and H and W are the original image height and width, respectively. Thus, we get a prediction
for each pixel, and perform semantic segmentation.

4 Skip Connections

“Fully Convolutional Networks for Semantic Segmentation” by Long et al. introduced the idea of skip
connections into FCNs to improve segmentation accuracy. (It also popularized FCNs as a method for
semantic segmentation).

Upsampling using transposed convolutions or unpooling loses information, and thus produces coarse
segmentation. Skip connections allow us to produce finer segmentation by using layers with finer information.

4



Skip connections combine the coarse final layer with finer, earlier layers to provide local predictions that
“respect” global positions. Refer to the figure below for a diagram of the skip connection architecture.

To create FCN-16s, the authors added a 1× 1 convolution to pool4 to create class predictions, and fused
these predictions with the predictions computed by conv7 with a 2× upsampling layer. For FCN-8s, they
added a 2× upsampling layer to this output, and fused it with the predictions from a 1×1 convolution added
to pool3.

The figure below left shows that FCN-16s provides much finer segmentation than the standard FCN-
32s, and FCN-8s even finer segmentation (much closer to ground truth). The accuracy table below right
quantifies the segmentation improvement from skip connections.

5 Further Work in Semantic Segmentation

It should be noted that to max unpooling with saved indices we cover in Section 3.2 was not introduced in
the FCN paper above, but rather a later paper called SegNet.

5



Not unsurprisingly, SegNet performed better than standard FCNs with skip connections. Nevertheless,
SegNet has been surpassed numerous times by newer papers using dialated convolutions, spatial pyramid
pooling, and residual connections. We will cover these in a later lecture dedicated to semantic segmentation.

6 Acknowledgements

None of the diagrams were created by me.

• “Fully Convolutional Networks for Semantic Segmentation” paper

• “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation” paper

• Many diagrams from these CS231n slides

• CNN gifs

• FCN diagram from this paper

• CNN diagram

6

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf/
https://arxiv.org/pdf/1511.00561.pdf
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
https://github.com/vdumoulin/conv_arithmetic
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Noh_Learning_Deconvolution_Network_ICCV_2015_paper.pdf
 https://www.kernix.com/doc/data/cnn.png

	Introduction
	Semantic Segmentation
	Network Architecture
	11 Convolutions
	Unpooling
	Transposed Convolution

	Skip Connections
	Further Work in Semantic Segmentation
	Acknowledgements

