
A Brief Introduction to Gradient Boosting

Abhishek Allamsetty

5/23/2018

1 Background

We see many Kaggle winners and high praise over utilizing a specific model known as a Gradient Boosting
Model (GBM) algorithm. Although GBM is being used everywhere, many users treat it as a black box
and run the models with pre-built libraries. That usage is fine and functional, but I think we can benefit
a great deal by taking a deeper look into the model and really understanding the ways in which it
works. The purpose of this lecture is to help simplify a supposedly complex algorithm, and help us all
understand this powerful tool just a little bit better.

2 Introduction

We’ll start with a basic example. We want to predict a person’s age based on whether they play video
games, enjoy to garden, and whether or not they like to wear hats. What we want to do is minimize our
squared error. We have the following nine training samples to build our model:

PersonID Age LikesGardening PlaysVideoGames LikesHats
1 13 False True True
2 14 False True False
3 15 False True False
4 25 True True True
5 35 False True True
6 49 True False False
7 68 True True True
8 71 True False False
9 73 True False True

Intuitively, we might expect that the people who like to garder are probably older, the people who like
video games are probably younger, and LikesHats is probably just some random noise.

Let’s take a quick look at our data to check these assumptions:

Feature False True
LikesGardening {13, 14, 15, 35} {25, 49, 68, 71, 73}

PlaysVideoGames {49, 71, 73} {13, 14, 15, 25, 35, 68}
LikesHats {14, 15, 49, 71} {13, 25, 35, 68, 73}

Now, we can model our data with a regression tree as shown in Figure 1. We’ll start off with the
requirement that the terminal nodes have at least three samples. So that means our regression tree will
make its first and last split on LikesGardening.

This is nice, but it’s missing some important information from our LikesVideoGames feature. Let’s try
allowing terminal nodes to have 2 samples.

1



Figure 1: Tree 1

Figure 2: Overfit Tree

Here, in Figure 2, we end up attaining some information about PlaysVideoGames, but we also pick
up random information from LikesHats, this is a good indication that we’re overfitting and our tree is
splitting random noise.

This is the big drawback when it comes to using a regression tree, it fails to include predictive power
from multiple, overlapping regions of the feature space. Let’s say we measure the training errors
from our first tree:

PersonID Age Tree 1 Prediction Tree 1 Residual
1 13 19.25 -6.25
2 14 19.25 -5.25
3 15 19.25 -4.25
4 25 57.2 -32.2
5 35 19.25 15.75
6 49 57.2 -8.2
7 68 57.2 10.8
8 71 57.2 13.8
9 73 57.2 15.8

Now,we can fit a second regression tree to the residuals of the first tree.

You can notice that this tree doesn’t include LikesHats even though our overfitted regression tree above
did. The reason is because this regression tree is able to consider LikesHats and PlaysVideoGames with

2



respect to all of the training samples, contrary to our overfit regression tree, which only considered each
feature within a small region of the space we input, which allows for random noise to select LikesHats
as a splitting feature.

Now, lets improve our initial predictions from our first tree by adding the ”error-correcting” predictions
from this tree.

PersonID Age Tree1 Pre-
diction

Tree1
Residual

Tree2 Pre-
diction

Combined
Prediction

Final Residual

1 13 19.25 -6.25 -3.567 15.68 2.683
2 14 19.25 -5.25 -3.567 15.68 1.683
3 15 19.25 -4.25 -3.567 15.68 0.6833
4 25 57.2 -32.2 -3.567 53.68 28.63
5 35 19.25 15.75 -3.567 15.68 -19.32
6 49 57.2 -8.2 7.133 64.33 15.33
7 68 57.2 10.8 -3.567 53.63 -14.37
8 71 57.2 13.8 7.133 64.33 -6.667
9 73 57.2 15.8 7.133 64.33 -8.667

3 Gradient Boosting: 1

Inspired by the thought process above, we make our first naive formalization of gradient boosting. What
we basically need to do is:

1. Fit a model to the data, F1(x) = y

2. Fit a model to the residuals, h1(x) = y − F1(x)

3. Create a new model, F2(x) = F1(x) + h1(x)

It isn’t hard to see how we can generalize this idea by adding more models that correct the errors of the
previous model, specifically we can allude to:

F (x) = F1(x) 7→ F2(x) = F1(x) + h1(x) . . . 7→ FM (x) = FM−1(x) + hM−1(x)

where F1(x) is an initial model to fit y

Since we initialize our procedure by fitting F1(x), our task at each step is to find hm(x) = y − Fm(x).

We must notice something. hm is just a model. We have not defined anything that requires it to be a
tree-based model. This is one of the concepts that work gradient boosting to an advantage. It acts as a
framework to iteratively improve any weak learner. What this allows us to claim is that in theory, a well
written gradient boosting module would allow you to plug in various types of weak learners, however
most often than not, hm is almost always a tree based learner, so we can interpret hm as a regression
tree like the one we started out with as our example.

4 Gradient Boosting: 2

Now what we want to do is tweak our model to conform to most gradient boosting implementations. We
want to initialize our model with a single prediction value, and since our main task at the moment is to
minimize squared error, we’ll initialize F with the mean of the trading target values.

Tree 1 SSE Combined SSE
1994 1765

3



F0(x) = argγmin

n∑
i=1

L(yi, γ) = argγmin

n∑
i=1

(γ − yi)2 =
1

n

n∑
i=1

yi

We are now able to recursively define each subsequent Fm, just like we did before.

Fm+1(x) = Fm(x) + hm(x) = y for m ≥ 0

Where hm comes from a class of base learning regression trees

5 Gradient Boosting: 3

Up until now, we’ve been building a model that minimizes squared error, but what if we want to minimize
absolute error? We are going to use an interesting method to do this. To determine F0, we start by
choosing a minimizer for absolute error. This will be median(y) = 35. Now, we can measure the
residuals, y − F0.

PersonID Age F0 Residual0
1 13 35 -22
2 14 35 -21
3 15 35 -21
4 25 35 -10
5 35 35 0
6 49 35 14
7 68 35 33
8 71 35 36
9 73 35 38

Let’s consider the first and fourth training samples. They have F0 residuals of -22 and -10 respectively.
Now suppose we can make each prediction one unit closer to its target.

Our respective squared error reductions would be 43 and 19, while the respective absolute error reductions
would be 1 and 1. So using a regression tree, which intrinsically minimizes squared error, will be focused
on reducing the residual of the first training sample. If we want to minimize absolute error, moving each
prediction one unit closer to the target produces an equal reduction in the cost function.

6 Gradient Descent

Let us establish this idea of the minimization of absolute error through exploring the concept of gradient
descent. For example,

L(x1, x2) =
1

2
(x1 − 15)2 +

1

2
(x2 − 25)2

What we want to is find a pair (x1, x2) that minimizes L. Notice, we can interpret this function as
calculating the squared error for hte two data points, 15 and 25 given two values for prediction, x1 and
x2. Although we are able to directly minimize this function, gradient descent will let us minimize much
more complicated loss functions that aren’t able to directly minimize.

Steps to Initialization:

• Number of Iteration Steps: M = 100

• Starting Point: s0 = (0, 0)

• Step Size γ = 0.1

4



For iteration m = 1 to M :

• Calculate the gradient of L at the point sm−1

• ”Step” in the direction of greatest descent (the negative gradient), with step size γ. Or, sm =
sm−1 − γ∇L(sm−1)

If γ is small, and M is big enough, sM will be the location of the minimum value of L.

7 How we can use Gradient Descent

Now we can begin to use the concept of gradient descent in our GBM. The function we ultimately want
to minimize is L with a starting point at F0(x). For iteration, m = 1, we compute the gradient of L
with respect to F0(x). We then fit a weak learner to the gradient components.

In the case of a regression tree, the leaf nodes produce an average gradient among samples with similar
features. For each leaf, we step in the direction of the average gradient, using line search to determine
the magnitude of each step. The result is F1, we iterate this process until we have FM .

What we have just done is to modify our gradient boosting algorithm so that it works with any differ-
entiable loss function. Let us reformulate our GBM with the ideas we have gathered.

We initialize our model with a constant value:

F0(x) = argγmin

n∑
i=1

L(yi, γ)

For m=1 to M: We want to compute the pseudo residuals: rpseudo = −[∂L(yi,F (xi))
∂F (xi)

]F (x)=Fm−1(x) for
i = 1, . . . , n.

We want to fit our base learner, hm(x) to our pseudo residuals, then compute our step magnitude
multiplier γm

Finally, we update:
Fm(x) = Fm−1(x) + γmhm(x)

Lets see how our current gradient boosting method affects the results in our sample problem for both
squared and absolute error.

Age F0 PseudoResidual0 h0 γ0 F1 PseudoResidual1 h1 γ1 F2

13 40.33 -27.33 -21.08 1 19.25 -6.25 -3.567 1 15.68
14 40.33 -26.33 -21.08 1 19.25 -5.25 -3.567 1 15.68
15 40.33 -25.33 -21.08 1 19.25 -4.25 -3.567 1 15.68
25 40.33 -15.33 16.87 1 57.2 -32.2 -3.567 1 53.63
35 40.33 -5.333 -21.08 1 19.25 15.75 -3.567 1 15.68
49 40.33 8.667 16.87 1 57.2 -8.2 7.133 1 64.33
68 40.33 27.67 16.87 1 57.2 10.8 -3.567 1 53.63
71 40.33 30.67 16.87 1 57.2 13.8 7.133 1 64.33
73 40.33 32.67 16.87 1 57.2 15.8 7.133 1 64.33

5



Figure 3: h0

Figure 4: h1

Age F0 PseudoResidual0 h0 γ0 F1 PseudoResidual1 h1 γ1 F2

13 35 -1 -1 20.5 14.5 -1 -0.3333 0.75 14.25
14 35 -1 -1 20.5 14.5 -1 -0.3333 0.75 14.25
15 35 -1 -1 20.5 14.5 1 -0.3333 0.75 14.25
25 35 -1 0.6 55 68 -1 -0.3333 0.75 67.75
35 35 -1 -1 20.5 14.5 1 -0.3333 0.75 14.25
49 35 1 0.6 55 68 -1 0.3333 9 71
68 35 1 0.6 55 68 -1 -0.3333 0.75 67.75
71 35 1 0.6 55 68 1 0.3333 9 71
73 35 1 0.6 55 68 1 0.3333 9 71

Figure 5: h0

6



Figure 6: h1

8 Final Concepts

There is another concept known as shrinkage that rounds out the concept of gradient boosting. Basically,
for each gradient step, the step magnitude is multiplied by a factor between 0 and 1 known as the learning
rate. So each gradient step is shrunken by some factor. The general consensus on this practice in addition
to gradient boosting is that it causes sample predictions to more slowly converge towards observed values.
As the slow convergence occurs, the samples get closer to their target and end up being grouped together
into larger and larger leaves, resulting in a natural regularization effect.

Finally, row sampling and column sampling, or the ability for a GBM to sample the data rows and
columns before each boosting iteration has proven to be effective. What makes this sampling method
particularly effective as it results in more different tree splits, which means more overall distribution of
information in the model.

In conclusion, gradient boosting proves to be incredibly effective in practice. The most popular im-
plementation, known as XGBoost, is used in a number of winning Kaggle solutions. XGBoost utilizes
several methods to further increase speed and accuracy of traditional gradient boosting, namely 2nd or-
der gradient descent. Some new competitors, such as LightGBM by Microsoft are also gaining traction.
Gradient boosting can be utilized as a classification and ranking model as well, as long as there exists a
differentiable loss function for the algorithm to minimize, we are able to use gradient boosting.

7


	Background
	Introduction
	Gradient Boosting: 1
	Gradient Boosting: 2
	Gradient Boosting: 3
	Gradient Descent
	How we can use Gradient Descent
	Final Concepts

