
Confidence estimates for neural networks

Rishabh Krishnan

May 13, 2018

Neural networks, right now, are mostly like a blackbox. What that means
is that when we get the result from a neural network, we have no idea how the
neural network computed it.One way to find a solution to this problem is to find
a confidence interval for the neural network’s answer to the question; how sure
the network is of its answer. These confidence intervals can be used to measure
the uncertainty of neural networks, which can be used in both scientific and
industry applications.

Review

Confidence Intervals

To get a confidence interval for a distribution, if you remember from RS1, in
order to get a confidence interval for distribution, we need to know the shape
of the distribution, and the standard deviation. For example, for a normal
distribution with standard deviation σ and mean µ, the confidence interval is :

µ± σ ∗ z∗

where z∗ is the critical value, depending on how confident we want our interval
to be. Note that the only variables in this equation are µ and σ (since z∗ is a
constant we can look up).

Applying this to Neural Networks

Let us model our actual values y(x) in the following way:

y(x) = f(x) + n(x)

where f(x) is the function that our neural network can model, and n(x) is some
additional noise that it can’t process.
Note that n is a function of x, which means we assume that the noise will change
depending on the input. That means we can’t just do one universal calculation
to figure out the standard deviation for the neural network.
So, what we need is, on average, for a given input, how much will our prediction
differ from the actual value? There are many ways to find this.

1



Ways to calculate uncertainty

Maximum Likelihood

The basic idea behind this part is to maximize the likelihood that we would
observe the training data , given the parameters we choose and the neural
network that we have . Thus, we are trying to maximize the function:

P (y(x)|x, µ, σ,N)

Note that, since the natural log function preserves order (if x > y, then ln(x) >
ln(y)) this is equivalent to minimizing the following function:

− ln (P (y(x)|x, µ, σ,N)) (1)

How will we make sure that our neural network maximizes this, we will
change the architecture in the following way. Although we still have the same

Figure 1: Neural network architecture for maximum likelihood method

inputs as before, we know have two sets of hidden units that come off of them.
In effect,we have two networks with the same inputs. These separate networks
train towards two different outputs; µ and σ, or the predicted value, and its
uncertainty.
Since there are two outputs now, we cannot simply use the cost function that
we usually use for backpropogation,(C(x) = ‖y − f(x)‖, where f(x) is the
prediction of the neural network, and y is the actual value for input x)), since
the uncertainty network would never get trained.

Rather, we will use (1) as the cost function, so:

C(x) = − ln (P (y(x)|x, µ(x), σ(x), N))

Note that the algebraic form of the cost function will depend on the specific
distribution that we assume for the noise. For example, if we assume that the
noise is normally distributed, then:

C(x) = − ln

 1√
2π (σ(x))

2
∗ exp

(
− (y(x)− f(x))

2

2 ∗ (σ(x))
2

)
Thus, after training this network, we will have a network that can give us

both the uncertainty and the predicted value for any input.

2



Bootstrapping

Statistics part

So, to understand why we do this, we first want to go through what bootstrap-
ping is in statistics. Let us have a probability distribution P . (More informally,
consider a box, in which we have a certain number of red balls, blue balls, and
green balls). Now, consider a sample X of sizen (drawing n balls out of the box).

We want to estimate the standard deviation of the overall distribution P by
using the standard deviation of the sample, s(X). If we knew the distribution
of P, we could then figure out how accurately our sample’s standard deviation
was at predicting the population standard deviation.
However, the problem is that in most situations, we don’t know the probability
distribution P. What we would ideally like to do is take many samples from P,
which would allow us to gauge how the sample standard deviation varies across
different samples. Again, we usually can’t do this, because that takes a lot of
time and space.
To solve this problem, the ”bootstrapping” process causes us to resample the
sample X, with the assumption that the sample is representative of the overall
distribution. With the resample, we use this to determine the standard deviation
of the overall population, using the variance between the samples.
Going back to the box example, if we originally drew 100 balls from the box,
but then we lost access to the box, so we couldn’t sample any more and see
how different samples varied from each other. In order to then get a good
approximation, we would assume that our 100 balls had a similar distribution
to the sample in the box; then, we would take samples of 10 balls from our
sample of 100 balls, and try to find out how these samples vary.

Applying this to machine learning

Consider the regression problem where we want to predict a person’s adult
height based on the adult height of their family members.
To solve this problem, there is technically an infinite dataset that we could use
to train a neural network that we were using. If we had access to the height
of a person, and the height of their family members, for every person that ever
lived or will live, we would have all possible data for this problem.

However, we obviously don’t have all that data, we only have a sample of it.
This is our sample X. Usually, what we do is take one neural network and train
it on our whole sample. This gives us an estimate for the expected value of the
adult height for each possible person, but it doesn’t give us any estimate of the
variation between people.

The bootstrapping method creates k different neural networks, and trains
each one on a random sample of our training data (a sample of our sample).
Then, for every input, we pass it into each of the neural networks. This gives
a set of results, which we will call S. To get the estimated standard deviation
for that input, we take the standard deviation of the results from all of the
networks.

Note that this does not require us to assume that the distribution is normal,

3



like the maximum likelihood method did. However, it also requires much more
time, since have to train more neural networks.

4


