
Encoder-Decoder Models in NMT

Joseph Rejive

May 2018

1 Introduction

Encoder-Decoder models are popular models for sequence to sequence tasks. They have many applications
such as image captioning, neural machine translation, and creating chatbots. At their core, they consist
of an encoder RNN which generates a ‘context’ vector from the input sequence and a decoder RNN which
generates an output sequence based off the context.

2 Encoder

The encoder is just an RNN, typically an LSTM or GRU, which generates a ‘context’ vector. In the encoder
RNN, we do not care about the outputs. Rather, we want to preserve the internal state of the RNN. The
final internal state is what we refer to as the ‘context’ vector. This is what the decoder uses to return an
output sequence.

3 Decoder

The decoder is another RNN which uses the ‘context’ vector (the final hidden state of the encoder RNN) to
generate an output. In training, a start of sequence token signals the decoder to begin the translation. It
then uses the output and the hidden states of the current timestep to produce the output and hidden states
of the next timestep.

1



4 Problems With Long Term Dependencies

Encoder-Decoder models struggle to handle long input sequences. Although in theory, LSTMs were designed
to handle long term dependencies, they does not work perfectly in practice. For example, say the encoder
input is an English sentence that has 50 words. The encoder has to represent all this information into a
fixed size vector. The decoder then has to use this vector and remember the information from 50 timesteps
ago. To fix this issue, a strategy called ‘Attention’ is used.

In the picture above, ‘y’ is the encoder output at each timestep, ‘LSTM’ is the decoder RNN, ‘h’ is the
decoder hidden state, and ‘Z’ is the output of the attention mechanism. The attention model takes each
encoder output and the decoder states of the previous timestep to compute the decoder states of the current
timestep. By looking at every encoder output, the decoder is able to take into account the context of the
entire sentence and produce a more accurate translation.

5 Implementing an Encoder-Decoder Model in Keras

Here’s the overall process for training the model:
1) Create 3 numpy arrays: ‘encoder input data’, ‘decoder input data’, and ‘decoder target data’
‘encoder input data’ is an array of shape (num samples, max english sentence length, num english chars)
which contains the one hot encoded English sentences.
‘decoder input data’ is an array of shape (num samples, max spanish sentence length, num spanish chars)
which contains the one hot encoded Spanish sentences.
‘decoder target data’ is the same as ‘decoder input data’ but offset by one timestep. This means de-
coder target data[t] equals decoder input data[t+1]
2) Create an encoder LSTM which takes in ‘encoder input data’ and returns its final states.
3) Create a decoder LSTM which accepts the encoder’s final states and ‘decoder input data’ and returns a
character prediction.

2



5.1 Training the Model

import numpy as np

from keras.layers import LSTM, Dense, Input

from keras.models import Model

#hyperparameters

epochs = 100

latent_dim = 512

batch_size = 250

num_samples = 1000

#get data and vectorize it

data = open(’spa.txt’, ’r’).read().splitlines()[:num_samples]

english = [i.split(’\t’)[0].lower() for i in data]

spanish = [’\t’ + i.split(’\t’)[1].lower() + ’\n’ for i in data]

english_vocab = sorted({letter for word in english for letter in word})

spanish_vocab = sorted({letter for word in spanish for letter in word})

num_english_features = len(english_vocab)

num_spanish_features = len(spanish_vocab)

max_encoder_size = max([len(i) for i in english])

max_decoder_size = max([len(i) for i in spanish])

eng_c2i = {c:i for i,c in enumerate(english_vocab)}

spa_c2i = {c:i for i,c in enumerate(spanish_vocab)}

eng_i2c = {i:c for c,i in eng_c2i.items()}

spa_i2c = {i:c for c,i in spa_c2i.items()}

In this example, \t is the start of sequence token while \n is the end of sequence token. The ‘c2i’ dictio-
naries map characters to integers while the ‘i2c’ dictionaries map integers to characters. The c2i dictionaries
will be used to vectorize a sentence while the i2c dictionaries will be used to obtain a character from a vector.

encoder_input_data = np.zeros(shape = (num_samples, max_encoder_size, num_english_features))

decoder_input_data = np.zeros(shape = (num_samples, max_decoder_size, num_spanish_features))

decoder_target_data = np.zeros(shape = (num_samples, max_decoder_size, num_spanish_features))

for index in range(num_samples):

for i, c in enumerate(english[index]):

encoder_input_data[index, i, eng_c2i[c]] = 1

for i, c in enumerate(spanish[index]):

decoder_input_data[index, i, spa_c2i[c]] = 1

if i > 0:

decoder_target_data[index, i-1, spa_c2i[c]] = 1

‘encoder input data’ is the one hot encoded vector which will be fed into the encoder LSTM. ‘de-
coder input data’ is the one hot vector which is fed into the decoder LSTM. The only difference between
‘decoder input data’ and ‘decoder target data’ is that ‘decoder target data’ is one timestep ahead of ‘de-
coder input data’. This means ‘decoder target data’ will be compared to the output of the decoder LSTM
at each timestep to compute the loss.

encoder_input = Input(shape = (None, num_english_features))

encoder_lstm = LSTM(latent_dim, return_state = True)

_, encoder_state_h, encoder_state_c = encoder_lstm(encoder_input)

encoder_states = [encoder_state_h, encoder_state_c]

decoder_input = Input(shape = (None, num_spanish_features))

3



decoder_lstm = LSTM(latent_dim, return_sequences = True, return_state = True)

decoder_outputs, _, _ = decoder_lstm(decoder_input, initial_state = encoder_states)

decoder_dense = Dense(num_spanish_features, activation = ’softmax’)

dense_output = decoder_dense(decoder_outputs)

model = Model([encoder_input, decoder_input], dense_output)

model.compile(optimizer = ’rmsprop’, loss = ’categorical_crossentropy’)

model.fit([encoder_input_data, decoder_input_data], decoder_target_data, epochs = epochs,

batch_size = batch_size, validation_split = .1)

On the encoder side, we feed ‘encoder input data’ into the ’encoder input’ variable which is then fed into
the LSTM. ‘return states = True’ will return the final hidden states of the encoder LSTM, which are then
used as the initial states of the decoder LSTM. Finally, a Dense layer with a softmax activation is used to
create our predictions, which are then compared with ‘decoder target data’ to calculate our loss.

5.2 Testing the Model (Inference)

To actually test the model we trained, we need a slightly different setup. We’ll create an encoder model
which will accept a vectorized sentence as the input and output the LSTM’s final hidden states. The decoder
model will accept 2 different inputs: the hidden states of the decoder at the previous timestep (at the first
timestep it will accept the encoder’s hidden states) and the output of the decoder LSTM at the previous
timestep (at the first timestep it will accept the start of sentence token, \t).

encoder_model = Model(encoder_input, encoder_states)

decoder_input_h = Input(shape = (latent_dim,))

decoder_input_c = Input(shape = (latent_dim,))

decoder_state_inputs = [decoder_input_h, decoder_input_c]

decoder_outputs, state_h, state_c = decoder_lstm(decoder_input, initial_state =

decoder_state_inputs)

decoder_state_outputs = [state_h, state_c]

decoder_outputs = decoder_dense(decoder_outputs)

decoder_model = Model(decoder_state_inputs + [decoder_input], [decoder_outputs] +

decoder_state_outputs)

Here, we create an encoder model which returns its internal states. The decoder model will then use the
decoder’s internal states from the previous timestep and the decoder’s output from the previous timestep to

4



compute the output and hidden states of the current timestep.

def decode_sequence(input_seq):

states_value = encoder_model.predict(input_seq)

target_seq = np.zeros((1, 1, num_spanish_features))

target_seq[0, 0, spa_c2i[’\t’]] = 1.

stop_condition = False

decoded_sentence = ’’

while not stop_condition:

output_tokens, h, c = decoder_model.predict(states_value+

[target_seq])

sampled_token_index = np.argmax(output_tokens[0, 0, :])

sampled_char = spa_i2c[sampled_token_index]

decoded_sentence += sampled_char

if (sampled_char == ’\n’ or

len(decoded_sentence) > max_decoder_size):

stop_condition = True

target_seq = np.zeros((1, 1, num_spanish_features))

target_seq[0, 0, sampled_token_index] = 1.

states_value = [h, c]

return decoded_sentence

First, we get the encoder’s final hidden states by feeding in the vectorized English sentence. Then we feed
the decoder the start of sequence token and the encoder’s final hidden states. The decoder then outputs the
vectorized form of the output character along with the decoder’s hidden states. We take ‘output tokens’ and
convert that one hot encoded vector into its respective character by using the i2c dictionary. This character,
along with the decoder’s hidden states of the current timestep, is then fed back into the decoder. This
process keeps on going until we hit the end of sequence token (\n).

for seq_index in range(10):

input_seq = encoder_input_data[seq_index: seq_index + 1]

decoded_sentence = decode_sequence(input_seq)

print(’Input sentence:’, english[seq_index])

print(’Decoded sentence:’, decoded_sentence)

After testing the model on sentences from the training data, here is the output:

Input sentence: i work.

Decoded sentence: estoy trabajando.

Input sentence: im 19.

Decoded sentence: tengo diecinueve.

Input sentence: im up.

Decoded sentence: estoy levantado.

The model works well on these examples, but that’s to be expected as it’s from the training data. Further
improvements could include a word level model with an attention mechanism.

5


