
Genetic Algorithms

Alan Zheng

April 25, 2018

1 Introduction
Much of what we as humans imagine and create is inspired by nature, and machine learning

is no exception. Neural networks are inspired by the neurons in a brain and extract information
from a dataset. Developed by John Holland in 1975, the genetic algorithm (GA) is a search-based
optimization technique based on the principles of genetics and natural selection. It is frequently
used to find optimal or near-optimal solutions to difficult problems which otherwise would take a
lifetime to solve.

2 Why Genetic Algorithms?
GAs are good when:

• there are multiple local optima

• the objective function is not smooth (so derivative methods can not be applied)

• the number of parameters is very large

• the objective function is noisy or stochastic

• there is no information about the gradient of the error function

• you want to parallelize

• you’re lazy and don’t want to implement something complicated

A large number of parameters can be a problem for derivative based methods when you don’t
have the definition of the gradient. In this type of situation, you can find a not-terrible solution
via GA and then improve on that with the derivative based method. The definition of "large" is
growing all the time. Also, there is no need for backpropagation, so GAs can be a competitive
alternative for training deep neural networks for reinforcement learning for optimization problems.

3 Encoding Technique
In a GA, we represent each possible solution to the optimization problem as an individual

chromosome. Information is stored inside a chromosome, which can be represented by a component
vector, a vector, a string, etc. We call this the genome, or the genotype. In many situations, we
can’t tell anything about the individual or solution by just looking at the raw genome. We evaluate
the genome using a fitness function to show the phenotype, to determine what it means or how
well it performs in the context of the problem. We’ll talk about this later. We choose the way we
structure the chromosome depending on the problem we are trying to solve.

1

4 Initialization
To start off the GA, we generate a population, or a group of chromosomes. We may either

use random generation or generation with a known heuristic for the problem. It’s important to
note that with heuristic generation, you shouldn’t use the heuristic for the entire population, as it
can result in the population having similar solutions and very little diversity. Upon initialization,
we also use our fitness function to evaluate and score each of the population members. The fitness
function looks at a chromosome (a solution) and gives it a number based on how good the solution
is. It is important to note that the success of your algorithm highly depends on how well defined
your fitness function is. Obviously, at this point, all the fitnesses will most likely be terrible.

5 Selection
Based off of the chromosomes’ finesses, we select a constant number of them. There are

several ways to do this:

5.1 Roulette Wheel
Using Roulette Wheel selection, we assign a probability to each chromosome which is directly

proportional to its fitness.

Pi =
fi∑n
k fk

We then select a set amount of chromosomes based on their probabilities.

5.2 Stochastic Universal Sampling (SUS)
This is almost the exact same thing as roulette wheel selection, but with a little tweak.

Where roulette wheel selection chooses several solutions from the population by repeated random
sampling, SUS uses a single random value to sample all of the solutions by choosing them at evenly
spaced intervals. This gives weaker members of the population (according to their fitness) a chance
to be chosen and reduces the more unfair nature of fitness-proportional selection methods.

2

5.3 Rank Selection
Using rank selection, we assign a probability to each chromosome which is directly propor-

tional to its rank instead of its fitness. If there are n chromosomes, 1st place has rank n, 2nd has
rank n-1, and so on.

Pi =
ri∑n
r rk

Like roulette wheel selection, we then select a set amount of chromosomes based on their proba-
bilities.

5.4 Tournament
Using tournament selection, chromosomes are randomly sampled into multiple "tournaments,"

and the ones with the highest fitnesses within each group are selected.

5.5 Why?
The reason why we don’t just select the chromosomes with the highest fitnesses from each

population is that we don’t want to get stuck at a local maximum. We allow lower fitness individuals
to survive to explore other paths that could potentially be better. Here, we see hints of the
exploitation vs exploration problem. For tournaments, if we want to lean towards exploration,
increase the number of tournaments, and for exploitation, decrease it.

3

These selections are used to determine survival and which chromosomes to breed together in
crossover. The selected chromosomes are allowed to continue while the rest are discarded from the
population.

6 Crossover
The surviving selections are now candidates for parents! We need to crossover creating new

children to replace the chromosomes we brutally murdered in selection. If we used roulette wheel
selection, rank selection, or SUS, choosing parents is easy. All we need to do is use the saved
probabilities from selection and use the stochastic universal selection method from SUS. Typically
we choose 2 parents for each crossover, but you can do more. It is important to note that crossover
is not a global search function. If you take a set of genetic vectors and perform various types of
crossover on them, it will be folly to expect every conceivable vector from the crossover procedure.
The reality will be that we are doomed to search within a finite space of possible vectors. To search
effectively and beyond this finite space, you need something called mutation, which is effectively
an injection of stochastic noise. However, crossover isn’t entirely useless; it enables highly fit
individuals to easily propagate their good genes across the population, so that improvements
might be built, or found, on top of those.

Once we have the parents, different situations call for different operators for crossover. Some
common ones include:

6.1 One Point Crossover
In one-point crossover, a random crossover point is selected and the tails of its two parents are
swapped to get new off-springs.

6.2 Multi Point Crossover
Multi point crossover is a generalization of one-point crossover wherein alternating segments are
swapped to get new off-springs.

6.3 Uniform Crossover
In a uniform crossover, we don’t divide the chromosome into segments, rather we treat each gene
separately. In this, we essentially flip a coin for each chromosome to decide whether or not it’ll
be included in the off-spring. We can also bias the coin to one parent (perhaps the one with the
higher fitness), to have more genetic material in the child from that parent.

4

6.4 Davis’ Order Crossover (OX1)
OX1 is used for permutation based crossovers with the intention of transmitting information about
relative ordering to the off-springs. It works as follows

• Create two random crossover points in the parent and copy the segment between them from
the first parent to the first offspring.

• Now, starting from the second crossover point in the second parent, copy the remaining
unused numbers from the second parent to the first child, wrapping around the list.

• Repeat for the second child with the parent’s role reversed.

7 Mutation
In simple terms, mutation may be defined as a small random tweak in the chromosome to

get a new solution. It is used to maintain and introduce diversity in the genetic population and
is usually applied with a low probability. If the probability is very high, the GA gets reduced
to a random search. Mutation is the part of the GA which is related to the exploration of the
search space. It has been observed that mutation is essential to the convergence of the GA while
crossover is not. Again, the mutation probability, or mutation rate, relates to the famous explo-
ration vs exploitation problem. A higher mutation rate leans towards exploration, and a lower
towards exploitation.

Just like crossover, the mutation operator we use depends on the type of problem and chro-
mosomes we have.

7.1 Bit Flip Mutation
In this bit flip mutation, we select one or more random bits and flip them. This is used for binary
encoded GAs.

7.2 Random Resetting
Random resetting is an extension of the bit flip for the integer representation. In this, a random
value from the set of permissible values is assigned to a randomly chosen gene.

5

7.3 Swap Mutation
In swap mutation, we select two positions on the chromosome at random, and interchange the
values. This is common in permutation based encodings.

7.4 Scramble Mutation
Scramble mutation is also popular with permutation representations. In this, from the entire
chromosome, a subset of genes is chosen and their values are scrambled or shuffled randomly.

7.5 Inversion Mutation
In inversion mutation, we select a subset of genes like in scramble mutation, but instead of shuffling
the subset, we merely invert the entire string in the subset.

8 Loop

6

We keep repeating this process until the stopping criteria is met. The stopping criteria may
be when the maximum fitness of the population reaches a certain value, when a certain number of
generations have passed, etc. It really depends on what goal we’re trying to achieve with the GA.

9 Disadvantages
Sometimes, however, it’s not appropriate to use a GA and other optimization searches may be
better choices.

• need to tune hyperparameters (discard rate, mutation rate, crossover operator, etc.)

• not guaranteed a global maximum, may get stuck on local maxima

• time taken for convergence

• initial population may affect quality of solutions

• difficult to choose a good structure for some problems

• highly dependent on the definition of the fitness function

10 Application
GAs can be applied to

• Economics

• Neural Networks

• Image Processing

• Vehicle Routing

• Robotics

• Engineering Design

• and more......

In summary, many scenarios calling for an indefinite output optimized to definite parameters.
GAs can optimize these parameters to maximize the output.

GAs are very easy to implement and are used in a variety of fields, not just by data scientists.
People often use DEAP (Distributed Evolutionary Algorithms in Python), which is an evolution-
ary computation framework for rapid prototyping and testing of ideas. It already incorporates the
data structures and tool required to implement the most common evolutionary computation tech-
niques: GAs, genetic programming, evolution strategies, particle swarm optimization, differential
evolution, traffic flow, and the estimation of distribution algorithm.

7

	Introduction
	Why Genetic Algorithms?
	Encoding Technique
	Initialization
	Selection
	Roulette Wheel
	Stochastic Universal Sampling (SUS)
	Rank Selection
	Tournament
	Why?

	Crossover
	One Point Crossover
	Multi Point Crossover
	Uniform Crossover
	Davis' Order Crossover (OX1)

	Mutation
	Bit Flip Mutation
	Random Resetting
	Swap Mutation
	Scramble Mutation
	Inversion Mutation

	Loop
	Disadvantages
	Application

