RNN Advancements

Vinay Bhaip
April 2018

1 Introduction

Recurrent Neural Networks, or RNNs, are a type of neural network that uses
sequential data within its model. RNNs aren’t a new topic; they’ve been around
since the 1980s. But with more data and computational power, they’ve been
relevant in the fields of natural language processing, image generation, and
image captioning.

2 RNNs Review

The main purpose of an RNN is to handle sequential data, so accordingly it
should use the previous states that it outputs. In order to account for the
sequential data, the RNN structure looks like this:

0
O %1 o 0441
A
VT V V VT
N S S T
Unfold woox W W

U U U U

x X X Xt

Figure 1: A standard RNN

What makes an RNN different from standard networks is that the previous
hidden state from the last input is passed into the function for the current state.
For example, with the sentence “I like dogs”, the word “I” is passed through
the network and results in some output like normal. The previous hidden state
that was computed for “I” is passed into the function to calculate the hidden
state for “like”, and so forth. This can be modeled with the equation:

St = f(WStfl,U.’IJt) (1)

where W and U are weight matrices, s; is the state, s;_; is the previous
state, and z; is the input vector. The function that the two parameters are
passed into is an activation function like ReLU or tanh.

The output for each input is given through the function:

or = g(Vsy) (2)

where V' is a weight matrix and the function is another activation function
for classification, like softmax. All the weight matrices, W, U, and V', are the
same for each layer because we basically perform the same operation at each
step. Another important thing to notice is that although we can produce an
output at each stage, we can choose to only use the ones we want. This comes to
be helpful in scenarios like sentiment analysis where we want to model a many
inputs to one output scenario.

2.1 Backpropagation

Backpropagation in RNNs are similar to neural networks, involving the chain
rule as it takes a step back in time. If you want to see the full math behind it,
check out the other RNN lecture. A problem arises in normal backpropagation
when we consider our loss function:

Loss(y,j) = ZEZ (3)
i=0

In order to calculate the loss, we would have to find the loss by propagating
through the entire RNN and summing all of those errors for every single gradient
step. For really long RNNs, like training on the entirety of Wikipedia, this can
take a long time. This inspires the idea of truncated backpropagation through
time.

Loss

\
p—
H—
’,_,_/-V

/

7

— > =

Figure 2: Truncated Backpropagation Through Time

Rather than propagating and then backpropagating on the entire network,
we handle it in chunks. After calculating the loss for the subset of the network
that we're working with, we update the weights accordingly. A good way of
thinking of this is like mini-batch; the data is taken in chunks and allows the
model to converge more quickly.

2.2 LSTMs
Our original RNN cell looked like this:

& ® ®
t t

A

A A

| | |
© © ©

Figure 3: Original RNN Cell

Notice how only the input and the hidden state are controlling the outputs
of the cell.

Unfortunately, in practice, RNNs are susceptible to the vanishing gradient
and the exploding gradient problem. Essentially, through backpropagation, ear-
lier layers either face an exponentially small gradient or large gradient. This
means that in sequences of data, at the current time ¢, the RNN is likely to
forget relevant data from long before.

An LSTM, or Long-short term memory network, seeks to solve these prob-
lems. There are four main parts to an LSTM: the cell state (¢;), the input gate
(i¢), the forget gate (f;), and the output gate (o).

® ® ®

R G
A lebell A

| |
© © &

Figure 4: Overview of an LSTM Cell

This cell looks a lot more complicated than the vanilla RNN we saw before.
However, these added aspects improve the RNN by a lot so lets walk through
them.

Ci_1 Ct

Figure 5: LSTM Cell State

The cell state serves as the main flow across the cells. The gates modify the
information that is passed through the cell state. Note, the X denotes element-
wise multiplication (also known as the Hadamard product) and the + denotes
element-wise addition.

fe=0Wy-[hi1,2:] + by)

Figure 6: LSTM Forget Gate

The forget gate chooses whether or not the information should be added to

the cell state. This gate is a sigmoid layer that takes in h; 1 and x;. This forget
gate output will be multiplied into the cell state, so if the forget gate has values
of 0, then it would forget the information and if it has values of 1, then it would
remember all the information.

iv =0 (Wi-lhe—1,2¢] + b;)
ét :tanh(Wc-[htfl,xt] + bc)

Figure 7: LSTM Input Gate

Next is the input gate. This passes the input from the h;—; and x; values
and combines it with the C,, or new candidate values. C; takes in the inputs
and looks to find new values that are possible. Notice that this is a hyperbolic
tan function, which outputs values from -1 to 1. This allows the layer to give
negative correlations to a value as well.

ftT (e Cy=fixCiy +iy % Cy

Figure 8: LSTM Combining Values

These values are all combined and put into the cell state which passes the
values through.

@anb> Oy = O'(WO [ht—lgx't] + bo)
ht = oy * tanh (Cy)

ht—l

A

Figure 9: LSTM Output Gate

Lastly, there is the output gate. This is just another sigmoid layer, which
is combined with the tanh of the cell state to give the h; final value that gets
passed into the next cell.

All these gates would be trained through backpropagation as they’re just
layers in a network. However, with all the layers, LSTMs can be computationally
expensive, which leads us into our next section.

2.3 GRUs

N 2z =0 (W, [hi—1,24])
=0 (Wr : [ht—hfﬂt])
hy = tanh (W - [ry * hy—1, x¢))

b1 (

ht:(l—zt)*ht_1+zt*}~lt

oA |
Figure 10: GRU Cell

GRUs, or Gated recurrent units, combine the forget and input gate into one
“update” gate. Additionally, it merges the cell state and the hidden state, and
adds other changes for efficiency. Fewer layers to train means a faster model.

GRUs are a relatively new concept as well, being discovered by Cho, et al.
in 2014. LSTMs, on the other hand, have been around since 1997, from the
discovery by Hochreiter and Schmidhuber.

3 Language Modeling
Now that we understand common RNNs, we can see actual applications. There

are two primary ways we can model language, either character by character or
word by word. For the character by character method, we would have a list

of characters that are available in our vocabulary. For example, using English,
we would have 26 characters plus whatever punctuation and numbers needed in
our vocabulary. The same thing applies for the word by word method, but our
vocabulary would comprise of all the words available.

The question then becomes how we represent this data. We can do so
through one-hot encoding. Onme-hot encoding means that our input vectors
would be of size 1 by our vocabulary size.

"a" "about" "@3" "zc&m"
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
o [0 [o] [1]

Figure 11: One-hot Encoding

The reason we do this is because if we were to set each vector to be of size 1
by 1 and increment the value based on whatever is in our vocabulary, it would
learn certain pieces of data to be closer than others. For example, if we had the
vocabulary of [a, b,] and set the vectors for each one respectively to be [0], [1],
and [2], our model would think that “a” and “b” are closer together than “a”
and “c”, which obviously doesn’t make sense.

Another question with RNNs becomes how can we generate new text to
continuously go on. The way this works is we pass in a seed value for the xg, or
the initial value that goes in. From that we get some output from the softmax
function, which we take the maximum of as our value. To continue this chain,
we pass this output as the x4 input vector.

For this, when we choose what to pass in as the next input vector, we can
either just pass the highest value from our softmax, or alternatively, we can
sample from the softmax probabilities and pass that for the next input. The
reason as to why we do this is to generate multiple new types of output sequences
giving more diversity to the model.

3.1 Sequence to Sequence Models

The goal of a sequence to sequence model is to map one sequence to another
sequence. This can be done by having two RNNs, one as an encoder and the
other as a decoder. The encoder takes in a sequence and maps it to one output
vector and the decoder takes that one output vector and maps it to another
sequence. In other words, an encoder is in the format of a many to one structure
and the decoder is in the format of a one to many structure.

ENCODER DECODER

| am good

(Embedding)

I I I I

how are you ?

time step 1 2 3 4 5 6 7

Figure 12: A Seq2Seq Model

In the figure above, we can see that this model can be used for chat bots
and also for machine translation, meaning we take words of one language and
convert them into words of another language.

How does the model know when to stop translating? In training, there would
be an end of sequence token appended onto the end of the translated text, like
< EOS >, which signifies that the translation should stop.

3.2 Autoencoders

An autoencoder attempts to compress a vast amount of information into one
dense object, without losing any of the information. The middle part of an
autoencoder is the compressed version of the data.

.—> Encoder —>E_> Decoder _>

Original
input

Reconstructed
input

Compressed
representation

Figure 13: An Autoencoder

When coding this model, in Keras for example, everything is done the
same as if making a standard model, but we run Model. fit(X, X) instead of
Model. fit(X,Y). This is so the model can map the same value to itself, while
compressing it inside the image.

The reason this can prove to be useful in Seq2Seq models is because when
in the task of machine translation, the middle part represents a universal part
of the text. So when translating between English and German, the RNN could
encode the data into one vector with the information, and pass that to a decoder
to translate the original text.

3.3 Attention

As great as sequence to sequence models are, we are relying on the last token
of the encoder to contain all the information for the entire output sequence.
Each part of the input sequence should play a different role for each part of the
output sequences.

;
decoder e BENN e o
attentional
o ﬂ S -

h h h hn-1
encoder 9 L —ly s J_..

I, iy

Figure 14: Attentional RNN

embed

1

Into each RNN cell, we pass in a weighted combination of the input states,
which allows each output result to attend to different parts of the input sequence.
This concept, accordingly so, is called attention. For each state of the decoder
at a time step, s;, the sum of each weight multiplied by its respective input
hidden state is added. In other words, the attention added for each state i is
generally in the structure:

t
a= Z a; ¢ * hy (4)
i=1

Visualizing the weight matrix a lets us see what input words contribute to
each output word:

c
o
=
%}
>
jut
L
0
@
(@]

of

the
equipment
means
that
Syria
can

no
longer
produce
new
chemical
weapons
<end>

La
destruction
de

I
équipement
signifie
que

la

Syrie

ne

peut

plus
produire
de
nouvelles
armes
chimiques

<end>

Figure 15: Attention Visualized

In this visualization of a translation of a French sequence to an English
sequence, the squares that are brighter show where the attention is activated.
For example, the first box on the top left shows that “La” contributes to the
output of “Destruction”. The overarching trend shows that the model goes
through the inputs in order for the most part when generating the output.
However, we can see attention really working in examples like when both the
inputs “la” and “Syrie” contribute to the output term “Syria”.

An important concept in attention is this idea of hard attention versus soft
attention. Hard attention focuses on one fixed area of the input, whereas soft
attention takes in a weighted distribution of where to look.

pEIOCETENS S
“AERREERRR
A bird flying over a body

water .

Figure 16: Soft vs. Hard Attention

10

Notice how in the top row of images, each image shows a distribution of
the regions that are being looked at but in the bottom row images, each image
shows a direct location that is being looked at. The problem with hard attention
is that it isn’t differentiable, so different techniques have to be applied to work
around that.

Even though attention seems to be really helpful, when the input sizes and
the output sizes increase, the amount of values for attention needed increases
by a lot as well. This can also be inefficient for long character by character
models. A possible solution for this is using reinforcement learning to filter out
areas where the attention isn’t needed.

4 PixelRNN

A cool application of RNNs is for filling in areas of an occluded image. The
interesting part of the paper which this concept was the introduction of a 2D
RNN.

The two main techniques employed were the Row LSTM and the Diagonal
BiLSTM. This lecture won’t get into the specifics of how each was used, but the
general concept was that the Row LSTM went pixel by pixel horizontally, and
the Diagonal BiLSTM accordingly goes pixel by pixel on the diagonals, with a
convolution kernel size of 2.

Figure 17: PixelRNN Outputs

On the left are the images that would be passed in, with the occlusion, and
on the right are the ground truth images. All the images in between are the
generation by the network. From some distance away, it sortof looks accurate,
but close-up, the images are obviously not perfect.

5 DRAW Network

DRAW, or the Deep Recurrent Attentive Writer, is an RNN for image genera-
tion, but does so in a way that tries to mimic the way humans create images.

11

ated [y .

1 28x28 1 28x28
Decoder _> Decoder _>
sample T 20x1 T 20x1
(norlr"tllt.etlilits‘t{reigl?{ion) (norllarllt.ecrllits‘tfrei%tg{ion)
mean, stddEVT 20x1 T 20x1
—— [| —
1 28x28 1 28x28

image y

Figure 18: DRAW Model

Although this seems like an autoencoder, it’s actually a different type of
autoencoder than mentioned earlier in the lecture. This network specifically uses
a variational autoencoder (VAE). VAEs are essentially generative autoencoders;
the encoder creates a latent vector that has a probability distribution, which
the decoder samples from to create the generated image. Why go through this?
This makes sure that different images can be generated through the same input
image, because the model learns the underlying distribution.

Now we have an RNN that can sequentially make the generated image over
time. But looking at the sequence of generated images at each time step, the
model is drawing on the entire image and making small changes each time. We
would rather have the model work in one area and move around as if it was
actually drawing it by hand. This is where attention comes in.

12

s (o Wl s[S[S[RRR)
HDs|clolala|88]88]
S 0 e o |2+ 333
s e |o|0|9|3|S 1SS
Hilelelbl6|8|88/88

0] L [5]5]5]5]3]3]3)
HO[s]sls]sle]e]4]4]Y)
Hidlle [¢ lelololooloo
M4 lel99]7/9|919
il 66000000

Time —

Figure 19: DRAW with Attention

To keep things simple, basically there’s an added attention gate, which tells
the model where to focus on. This continuously shifts at each time step, until
the model finishes the image. The end result of these images is pretty successful.

1425008) 71 55 " Y 47
o YRl v
g (55 /00 s TG 022 (5 K
m&&‘mumﬂalnﬂw e
IEHmWnllﬂw
geus® 1ty | s JEe 122
IMEEM{%“EII
15 10ELIEE 5585 mvloa g o)
I o157 1045 2L 308 s 16 18
L. 31/207)CTIRRRREEH 201825 3o

Figure 20: DRAW Generated Street View House Numbers

These generated images of house numbers looks really accurate, and basically
indistinguishable from real pictures of house numbers.

13

6 Conclusion

There’s a lot within the field of RNNs, and is growing rapidly as it sees appli-
cations all over. This lecture should have given you a glimpse into RNNs and
the advancements that are currently happening.

7 Acknowledgements

I did not create any diagrams or images in this lecture. All credits go to their
respective owners. Here are most of the sources I used:

e Stanford RNN CS231n Lecture

Christopher Olah’s LSTM Walkthrough

Pixel RNN Paper

Attention Paper

DRAW Paper

Kevin Fran’s DRAW Walkthrough

14

http://www.youtube.com/watch?v=6niqTuYFZLQ
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/pdf/1601.06759v2.pdf
https://arxiv.org/pdf/1502.03044.pdf
https://arxiv.org/pdf/1502.04623.pdf
http://kvfrans.com/what-is-draw-deep-recurrent-attentive-writer/

	Introduction
	RNNs Review
	Backpropagation
	LSTMs
	GRUs

	Language Modeling
	Sequence to Sequence Models
	Autoencoders
	Attention

	PixelRNN
	DRAW Network
	Conclusion
	Acknowledgements

