
Natural Gradient

Sylesh Suresh

February 2019

1 Introduction

The natural gradient is an alternative to standard stochastic gradient that has
been a popular area of research in recent years as it has shown to lead to
much faster neural network convergence than standard gradient descent even
with the best optimizers like Adam and Adadelta. Many popular techniques
that are used with neural networks such as batch normalization and second-
order methods can also be shown to be approximations of the natural gradient,
and recent research has been focused on developing new approximations to the
natural gradient, KFAC (Kronecker-factored approximate curvature).

2 Motivation

The idea is that the neural network parameter space is arbitrary, and that it
isn’t the normal Euclidean space we are used to. Our standard gradient descent
method would be perfect if the space was Euclidean, but it turns out that it
isn’t - the space is actually a Riemannian manifold. We are trying to apply a
Euclidean method to a space which is non-Euclidean. The parameter space is
like Earth - round, curved, but the standard gradient is treating it as if it’s flat.

Let’s look for evidence that our parameter space isn’t flat. Let’s consider
our current gradient update under two different coordinate systems. We will
represent the weights of our neural network as θ (a vector containing all the
weights), the loss function as J , and the learning rate as α.

θk+1 = θk + α∇θJ(θk)

where θk represents the weights at iteration k. Consider moving to a different
coordinate system, x = A−1θ. Let’s optimize the function J(Ax) with respect
to x instead of θ now.

xk+1 = xk + α∇xJ(Axk)

We should be able to arrive at the first equation by multiplying the second
equation by A, but instead, we arrive at:

Axk+1 = Axk + αAAT∇AxJ(Axk)

1

which is
θk+1 = θk + αAAT∇θJ(θk)

(the AT comes from the chain rule). That’s not our original equation. This
means that applying a linear transformation (A) to the coordinate system
changes our weight update, so we have to take the structure of our coordinate
system (or space) into account. We will want an affine invariant parameter up-
date in the end (meaning that going from θ to x = A−1θ won’t change the
parameter update).

Imagine that our update was actually

θk+1 = θk + αH−1(θk)∇θJ(θk)

where H is the Hessian (a matrix of second derivatives, where Hij(θ) = ∂J
∂θi∂θj

.

Why? When we go from x to θ, the Hessian transforms from H(x) to ATH(θ)A
(again, this is the chain rule). When we optimize the function J(Ax) with
respect to x instead, we get:

xk+1 = xk + α(ATHA)−1AT∇θJ(Axk).

This is
x+αA

−1H−1A−1T AT∇θJ(Axk) = αA−1H−1∇θJ(Axk)

If we multiply by A, we get our original equation! This leads us to believe
that a natural gradient could be defined as something like H−1∇θJ . Now, it
turns out that this step direction is invariant to affine transformations to our
coordinate system, but not to general coordinate transformations. This does,
however, help us get an idea of what a truly natural gradient might look like.

3 Derivation

Now that we have our bearings and a more clear idea of what we are looking for,
let us approach the problem from scratch. Let us define our problem as follows.
We want to calculate what change in the weight vector will minimize the cost
function the most. Let’s define the change in the weight vector dθ = εa where a is
a unit vector and ε is some small constant. In general, f(r+dr) = f(r)+∇fT dr.
So,

J(θ + dθ) = J(θ) + ε∇JT (θ)a

This is true for small dθ. We want to minimize J(θ+dθ) with respect to a with
the constraint that a is a unit vector. The constraint is |a|2 = 1. In Euclidean
space, this is simply

∑
i(a

2
i) where ai is the ith component of a, but this isn’t the

case for the parameter space of neural networks. Instead, the general formula
for the magnitude of a vector is aTGa for some positive-definite matrix G (a
matrix defined such that vTGv for any vector v is always positive). Notice that
if G is the identity, the formula is just aTa is the formula we are used to in

2

Euclidean space. The matrix G needed for normalization depends on the space.
We can use Lagrangian multipliers to solve this minimization problem.

∂

∂ai
[J(θ) + ε∇JT (θ)a] = λ

∂

∂ai
[aTGa]

We can rewrite aTGa as
∑
i,j gijaiaj where gij is the element of G in row i and

column j. Differentiating, we arrive at

ε
∂J(θ)

∂θi
= λ

∑
j

gijaj

for all i. Since this is true for every i, we can conclude:

ε∇J(θ) = λGa

Solving for a, we finally arrive at:

a =
ε

λ
G−1∇J(θ)

a is a unit vector, so ε
λ is just a normalizing constant. So our update, is a

constant multiple of −G−1∇J(θk). We define our weight update, or natural
gradient as

∇̃J(θ) = G−1∇J(θ)

We can show that G is not only a positive-definite matrix representative of the
neural network parameter space but is also related to the Hessian of the weights.
(It isn’t the plain Hessian itself, however - the Hessian won’t always have the
properties that we’re looking for. Specifically, the Hessian is not representative
of the parameter space and does not act as the normalizing matrix in the gen-
eralized dot product formula (aTGa). An easy way of seeing this is noticing
that the Hessian isn’t necessarily positive-definite - but the normalizing matrix
must be positive-definite; otherwise, a vector’s dot product with itself will be
negative, which violates an essential property of the dot product.)

4 Calculation

Now, we will attack the natural gradient problem from yet another perspective -
but this time, we will get an explicit formula for the form of the natural gradient,
including the mysterious matrix G.

4.1 Parameterization-Invariant Metric

The problem was that our dot product/distance measure was not invariant to
the weight parameterization - in standard gradient descent we assume that our
space is Euclidean and that our distance measure is the Euclidean metric (hence
|a|2 = 1. In the derivation section, this assumption would have set G equal to

3

the identity, which would have given us the standard gradient update). Let
us consider a distance measure that would be invariant to reparameterization.
Consider KL divergence:

KL(P (x), Q(x)) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx

where p(x) and q(x) are the probability density functions corresponding to P (x)
and Q(x), respectively. (That is, p(x)dx will give you the probability that x lies
between x and x + dx given P (x) - p(x) is a probability density). Let’s make
the transition from x to y = f(x). p(x)dx = p(y)dy since y is just a coordinate
transformation that shouldn’t change the probabilities. We then have, going
from the x-world to the y-world:

KL(P,Q) =

∫ ∞
−∞

p(y) log

(
p(y) dydx
q(y) dydx

)
dy

The derivatives cancel, so we simply have:

KL(P (x), Q(x)) =

∫ ∞
−∞

p(y) log

(
p(y)

q(y)

)
dy

This is the exact same as our original equation except with y instead of x, im-
plying that the KL divergence is invariant under any coordinate transformation
y = f(x).

4.2 Approximation

Recall that we are looking for a parameterization-invariant measure of the dif-
ference between the set of weights θ and θ+dθ (Taking the difference and taking
the magnitude squared wasn’t invariant). Let’s use an approximation of the KL
divergence as our metric. First, we need to understand how we can treat a
neural network as a probability distribution over its predictions, i.e. the classes.
Given a particular set of weights, there is a certain probability that the network
will predict a particular class, for any input. We represent this probability as
P (y|θ), where y represents the class. By computing KL(P (y|θ), P (y|θ + dθ)),
we are calculating how much the change in weights dθ changes the network’s
output probability distribution. Intuitively, we can see that this is a better way
of measuring the change in the network than simply measuring the magnitude
of dθ since the change in the output probability distribution is what we really
care about, not the weights themselves. We will consider the case of discrete
classes; so we will use the discrete version of the KL divergence:

KL(P (y|θ), P (y|θ + dθ)) =
∑
y

P (y|θ) log

(
P (y|θ)

P (y|θ + dθ)

)
dx

We’ll exploit the Taylor series about dθ to approximate this metric:

KL(P (y|θ), P (y|θ+dθ)) ≈
∑
y

P (y|θ)
(

log
P (y|θ)
P (y|θ)

−∇θ logPT (y|θ)dθ − 1

2
dθT∇2

θ logP (y|θ)dθ
)

4

We can simplify this all the way to:

=
1

2
dθT

(∑
y

P (y|θ)∇θ logP (yθ)∇Tθ logP (yθ)

)
dθ =

1

2
dθTF (θ)dθ

The expression sandwiched between dθT and dθ is called the Fisher Information
matrix, F (θ). In other words, the matrix G that we discovered before is equal
to the Fisher Information matrix. Our final natural gradient update, is, then:

∇̃J(θ) = F−1∇J(θ)

5

