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1 Introduction

Naive Bayes is a simple supervised classifier based on Bayes’ theorem that,
despite its assumption that there is independence between every pair of features
of the input given its classification, tends to perform quite well.

2 Derivation of Bayes’ Theorem

We can start off with one of the basic probability equalities:

P (A|B) =
P (A ∧B)

P (B)

This reads: the conditional probability of event A given that event B has
occurred is equal to the probability of both event A and event B occurring
divided by the probability of event B. What we want to find is a relationship
between P (A|B) and P (B|A). You can imagine that finding this relationship
would be useful in machine learning, as it would very nice to be able to calculate
the probability of a data sample belonging to a certain class given the features of
that data sample (which is what we’d like a machine learning model to be able
to calculate) by using the probability that a data sample has certain features
given that it belongs to a particular class (which is something we can calculate
from training data).

So, getting back to the equation, if we multiply both sides by P (B), we get:

P (A|B)P (B) = P (A ∧B)

Note that P (A∧B) = P (B∧A), and furthermore, P (B∧A) = P (B|A)P (A).
Thus,

P (A|B)P (B) = P (B|A)P (A)

Dividing both sides by B, we arrive at Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)
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3 Bayes’ Theorem

We can apply Bayes’ Theorem to machine learning. Specifically, say we are given
a data sample with n features, x1, x2, x3, ..., xn. We want to find the probability
that this data sample belongs to a particular class y. In other words, we want
to calculate P (y|x1 ∧ x2 ∧ x3...∧ xn). (We can use commas instead of the ’and’
symbols for shorthand, writing the probability instead as P (y|x1, x2, x3, ..., xn)).
Using a dataset of samples which are each labeled with the class y and features
x1, ..., xn, we want to calculate this probability. We can apply Bayes’ Theorem:

P (y|x1, ..., xn) =
P (y)P (x1, ..., xn|y)

P (x1, ..., xn)

The numerator of the right-hand side of the equation can be condensed as
P (A|B)P (B) = P (A,B):

P (y|x1, ..., xn) =
P (x1, ..., xn, y)

P (x1, ..., xn)

Using the same law (P (A|B)P (B) = P (A,B), we can decompose the nu-
merator like so:

P (y|x1, ..., xn) =
P (x1|x2, ..., xn, y)P (x2, ..., xn, y)

P (x1, ..., xn)

Then, we can decompose the second factor of the numerator in a similar
fashion:

P (y|x1, ..., xn) =
P (x1|x2, ..., xn, y)P (x2|x3, ..., xn, y)P (x3, ..., xn, y)

P (x1, ..., xn)

We can keep decomposing the last factor in the numerator until we arrive
at:

P (y|x1, ..., xn) =
P (x1|x2, ..., xn, y)P (x2|x3, ..., xn, y)P (x3|x4, ..., xn, y)P (x4|x5, ..., xn, y)...P (xn|y)P (y)

P (x1, ..., xn)

This is nice, but we usually cannot calculate the numerator directly if we
are given an unseen sample. If we could, it would mean that we already have a
sample in our training dataset with the exact same features x1, ..., xn. The goal
is to be able to arrive at an expression that allows us to handle the general case.

At this point, we will have to make a (somewhat fallacious) assumption
about the data in order to arrive at a meaningful expression. The assumption is
that each of the features of the data are independent from every other feature.
The probability that a certain feature takes on a certain value is independent
of the values that other features take on. To give a concrete example, say we
were trying to classify e-mails as being spam or not spam, with the nth feature
being the nth word in the e-mail. Our assumption says, for example, that
the probability of the presence of the word ”Nigerian” is independent of the
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presence of the word ”prince”. This is definitely not true for some examples as
you can see, which is why the classifier is called naive. It turns out, however,
that the classifier tends to make fairly accurate predictions, even when applied
to situations like detecting spam e-mail.

The reason we make this assumption is because we really don’t like all the
conditionals in each probability. This assumption will make all those con-
ditionals go away - if a feature is independent of every other feature, then
we can simply remove the features from the conditional part of the probabil-
ity. For example, let’s look at P (x1|x2, ..., xn, y). Our assumption says that
feature x1 is independent of features x3, x4, x5 and so on. This means that
P (x1|x2, ..., xn, y) = P (x1|y) - we can take out all the other features from the
conditional. Moreover, we can do this for every single probability with features
in the conditional. This is useful because we can then simplify our equation to:

P (y|x1, ..., xn) =
P (x1|y)P (x2|y)P (x3|y)...P (xn|y)P (y)

P (x1, ..., xn)

We can use capital pi notation to write the n factors in the numerator:

P (y|x1, ..., xn) =

P (y)
n∏

i=1

P (xi|y)

P (x1, ..., xn)

This is the fundamental equation of naive Bayes. Specifically, when we are
given a sample whose class is unknown with features x1, ..., xn, we can calcu-
late P (y|x1, ..., xn) for each possible class y and choose the class that returns
the highest probability when plugged into the equation as being the correct
classification for the sample.

Note that P (x1, ..., xn) does not depend on y, so we can simply maximize

P (y)
n∏

i=1

P (xi|y) with respect to y, which will yield our class prediction.

4 Continuous Features

The expression we derived above will work cleanly for categorical features; we
can calculate P (xi|y) for any specific value of categorical feature xi and specific
class y by dividing the number of samples in our training dataset that have
that categorical feature and class y by the number of samples with the class
y. On the other hand, for continuous features, we must define P (xi|y) with
a probability distribution. Continuous features are a completely different kind
of beast. It is very likely that the samples in our dataset will have continuous
features that take on values close to but not exactly equal to continuous features
we will see in the real world. For example, say we are trying to predict what
kind of flower a particular flower is based on the height of that flower. We may
have a flower in our training dataset with a height of 30 cm. If we are asked
to classify a flower with a height of 29.5 cm, it is likely that that flower will be
of the same type of the 30 cm flower in our dataset. But the heights are not
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exactly the same. We don’t have a flower with a height of 29.5 cm, so when
we try to calculate P (x1|y), the probability will turn out to be 0, which seems
like a pretty bad prediction. That is why we need to introduce a probability
distribution, which will tell us that hey, 29.5 cm and 30 cm are pretty close, so
it’s likely that the 29.5 cm flower is of the same type as the 30 cm flower. One
way to define this probability distribution is with the Gaussian distribution. If
the training data has a continuous feature xi, first, we will separate the training
data samples based on its class y. For each set of samples with class y, we must
calculate the mean µy and the variance σ2

y. We can now define P (xi|y) as:

P (xi|y) =
1√

2πσ2
y

e
−(xi−µy)2

2σ2y

This allows us to solve the previously defined maximization problem to calculate
our class prediction. Of course, assuming a normal distribution may not always
be the best answer when dealing with continuous features, so there are other
probability distributions we can define to increase the accuracy of our model,
but for the sake of simplicity, the normal distribution is a decent approximation.
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