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1 Introduction

Part 1 of this lecture covered the mathematics of decision trees. This lecture
will transition you from graphs and mathematics to writing the actual code for
the competition.

2 Review

Decision trees are created by splitting on a threshold of a feature which results
in the most information gain, and recursively continuing this process for each
of the children.

Let us review Information Gain with an example. Remember, the equation
is:

IG(Dp, f) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

We will use the Gini Impurity measure, just like last time:

I(i) = 1−
c∑

k=1

p(k|i)2

Consider the following data. We have two features, x1 and x2. Our label is
y.

x1 x2 y
1 0 0
1 1 0
1 2 1
2 2 1
3 0 1
3 1 1
3 2 1

Let’s graph this data. Let the  = 0 and ◦ = 1.
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We want to draw a vertical or horizontal line that best separates the data (ie
has the greatest information gain). Since we are restricted to the coordinates
of data points, a human will look at the graph and choose:

−1 1 2 3 4

−1

1

2
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4

Since we are classifying things based on whether they are less than the
threshold (x < 2), the point in the middle goes with the right side.

The decision tree that goes with this is:

x1 < 2

Y es

0 0 1

No

1 1 1 1

We can calculate the information gain.
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IG(Dp, f) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

Nleft = 3

Nright = 4

Np = 7

Now we need the impurities.

I(i) = 1−
c∑

k=1

p(k|i)2

For the parent, we calculate the impurity of the entire dataset, which is:

I(Dp) = 1−
(

2

7

)2

−
(

5

7

)2

= 1− 4

49
− 25

49
=

49− 4− 25

49
=

20

49

And for the children:

I(Dleft) = 1−
(

2

3

)2

−
(

1

3

)2

= 1− 4

9
− 1

9
=

4

9

I(Dright) = 1−
(

4

4

)2

−
(

0

4

)2

= 1− 1 = 0

Note that the most pure data I(i) = 0 is all one type.
Finally, we get the information gain:

IG(Dp, f) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

IG(Dp, f) =
20

49
− 3

7
∗ 4

9
− 4

7
∗0 =

20

49
− 12

63
=

1

7
∗
(

20

7
− 12

9

)
=

1

7
∗
(

180

63
− 84

63

)
IG(Dp, f) =

1

7
∗ 96

63
=

96

441

3 Data Structure

Let’s go back to the example from Section 2.1.

x1 x2 y
1 0 0
1 1 0
1 2 1
2 2 1
3 0 1
3 1 1
3 2 1
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How will we represent this data in our code? It’s simple! We’ll use a list of
lists, with each column a feature.



[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]


Alternatively, you can make the labels their own list. Our sample I/O code

has it this way:

Features =



[
1, 0
][

1, 1
][

1, 2
][

2, 2
][

3, 0
][

3, 1
][

3, 2
]


Labels =



0
0
1
1
1
1
1



To find the best information gain, we loop through each of the features
(columns), and each of the thresholds, splitting the matrix and calculating the
information gain. For example, in the previous example, we split on x1 < 2, so
our left child matrix would be:


[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

]


and the right child matrix:


[
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

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4 Summary

To ensure complete understanding and summarize the topics we’ve covered, lets
loop through all the features and each of the possible thresholds, splitting the
matrix for each one.

x1 < 1

Y es No

0 0 1 1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft = []

Dright =



[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]



x1 < 2

Y es

0 0 1

No

1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =


[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

]


Dright =


[
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

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x1 < 3

Y es

0 0 1 1

No

1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =


[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

]


Dright =


[
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]


x2 < 0

Y es No

0 0 1 1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft = []

Dright =



[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]



x2 < 1

Y es

0 1

No

0 1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =

[[
1, 0, 0

][
3, 0, 1

]]

Dright =



[
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 1, 1

][
3, 2, 1

]


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x2 < 2

Y es

0 1 0 1

No

1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =


[
1, 0, 0

][
3, 0, 1

][
1, 1, 0

][
3, 1, 1

]


Dright =


[
1, 2, 1

][
2, 2, 1

][
3, 2, 1

]


5 The Full Tree

Let’s build an entire decision tree. First, consider the following data.

x1 x2 y
0 0 0
1 0 0
1 1 0
0 1 0
1 3 1
0 3 1
2 2 1
4 1 1
3 1 1
3 2 1

We graph it and calculate that x1 < 2 gives us the greatest information gain.

I(Dp) = 1−
(

4

10

)2

−
(

6

10

)2

= 1− 16

100
− 36

100
=

100− 52

100
=

48

100
=

12

25

I(Dleft) = 1−
(

4

6

)2

−
(

2

6

)2

= 1− 16

36
− 4

36
=

16

36
=

4

9

I(Dright) = 1−
(

4

4

)2

−
(

0

4

)2

= 1− 1 = 0

IG(Dp, f) =
12

25
− 6

10
∗ 4

9
− 4

10
∗ 0 =

12

25
− 4

15
=

36

75
− 20

75
=

16

75
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The dataset is split:

Dleft =



[
0, 0, 0

][
1, 0, 0

][
1, 1, 0

][
0, 1, 0

][
0, 3, 1

][
1, 3, 1

]


Dright =


[
2, 2, 1

][
3, 1, 1

][
3, 2, 1

][
4, 1, 1

]


Now we make our next decision. We start with the left child, and it is obvious
that x2 < 3 generates the greatest information gain. (Again, our thresholds are
restricted to coordinates in our dataset).

−1 1 2 3 4

−1

1

2

3

4
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The data is now split

Dleft =


[
0, 0, 0

][
1, 0, 0

][
1, 1, 0

][
0, 1, 0

]


Dright =

[[
0, 3, 1

][
1, 3, 1

]]
We can now calculate the information gain. We know the impurity of the parent
dataset, which was the impurity of the left child on the last split.

I(Dp) =
4

9

Now, we calculate the children impurities to find our information gain:

I(Dleft) = 0

I(Dright) = 0

IG(Dp, f) =
4

9
− 4

6
∗ 0− 2

6
∗ 0 =

4
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All our data has been classified correctly, so the decision tree is done. We
will leave it as an exercise to the reader to draw the decision tree.

6 Code

Here’s how we recommend you structure your decision tree code for the com-
petition. It should be noted: do not split recursively until all data is pure. You
will overfit the testing data. Instead, set a baseline for your information gain. If
the maximum information gain is less than, say, 0.1, then stop the recursion and
make it a leaf of the tree. Play with this baseline to see how your training and
testing accuracy change. Remember: your goal is the greatest testing accuracy.

def calculateImpurity(matrix):

#do calculations

return impurity

def splitmatrix(matrix, feature, threshold):

#split matrix into leftchild, rightchild

return leftchild, rightchild

def informationGain(parent, leftchild, rightchild):

#do calculations
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return infoGain

def bestsplit(parent, depth):

for each feature in parent:

for each threshold in feature:

lchild, rchild = splitmatrix(parent, feature, threshold)

igain = informationGain(parent, lchild, rchild)

#if igain is the greatest:

# save the leftchild, rightchild, feature, threshold

#print this node (feature, threshold) of the decision tree

# hint: use depth to indent

#recur on leftchild

#recur on rightchild

7 Competition

• Do the competition at https://www.kaggle.com/c/decisiontrees. It
ends next week on Tuesday, October 9th, 2018.
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