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1 Introduction

Generative Adversarial Networks (GANs) are a seminal type of generative model, introduced in 2014 by the
University of Montreal. GANs have been heavily used in various generative tasks with impressive results.
GANs are most actively used for image generation tasks: plain image generation, image inpainting, super-
resolution image generation, and text-to-image. Over these few years, however, they have also been used
in real-life applications for text/image/video generation, drug discovery and text-to-image synthesis. Since
GAN’s first release, there have been multiple iterations on different types of GANs; here, we’ll cover the
basics only.

2 What do it do

In short, they belong to the set of algorithms named generative models. These algorithms belong to the
field of unsupervised learning, a sub-set of ML which aims to study algorithms that learn the underlying
structure of the given data, without specifying a target value. Generative models learn the intrinsic distribu-
tion function of the input data p(x) (or p(x,y) if there are multiple targets/classes in the dataset), allowing
them to generate both synthetic inputs x’ and outputs/targets y’, typically given some hidden parameters.

In contrast, supervised learning algorithms learn to map a function y’=f(x), given labeled data y. An
example of this would be classification, where one could use customer purchase data (x) and the customer
respective age (y) to classify new customers. Most of the supervised learning algorithms are inherently
discriminative, which means they learn how to model the conditional probability distribution function
(p.d.f) p(y|x) instead, which is the probability of a target (age=35) given an input (purchase=milk). Despite
the fact that one could make predictions with this p.d.f, one is not allowed to sample new instances (simulate
customers with ages) from the input distribution directly.

3 Intuition

Although the GAN architecture can take on several possible forms, the vanilla GAN consists of two neural
networks.

The first model is called a Generator and it aims to generate new data similar to the expected one. The
Generator could be assimilated to a human art forger who creates fake works of art.

The second model is named the Discriminator. This model’s goal is to recognize if an input data is ‘real’
— belongs to the original dataset - or if it is ‘fake’—generated by a forger. In this scenario, a Discriminator
is analogous to an art expert who tries to detect works as truthful or fraud.

∗Based off Justin Zhang’s lecture
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Figure 1: The GAN pipeline.

How do these models interact? Paraphrasing the original paper which proposed this framework, it can be
thought of the Generator as having an adversary, the Discriminator. The Generator (forger) needs to learn
how to create data in such a way that the Discriminator isn’t able to distinguish it as fake anymore. The
competition between these two teams is what improves their knowledge, until the Generator succeeds in
creating realistic data.

4 Math

A neural network G(z, θ1) is used to model the Generator mentioned above. It’s role is mapping random
input noise variables z to the desired data space x (say images). Conversely, a second neural network
D(x, θ2) models the discriminator and outputs the probability that the data came from the real dataset, in
the range (0,1). In both cases, θi represents the weights or parameters that define each neural network.

As a result, the Discriminator is trained to correctly classify the input data as either real or fake. This
means its weights are updated as to maximize the probability that any real data input x is classified as
belonging to the real dataset, while minimizing the probability that any fake image is classified as belonging
to the real dataset. In more technical terms, the loss/error function used maximizes the function D(x),
and it also minimizes D(G(z)).

Furthermore, the Generator is trained to fool the Discriminator by generating data as realistic as possible,
which means that the Generator’s weights are optimized to maximize the probability that any fake image
is classified as belonging to the real data. Formally this means that the loss/error function used for this
network maximizes D(G(z)).

In practice, the logarithm of the probability (e.g. log D(. . . )) is used in the loss functions instead of
the raw probabilities, since using a log loss heavily penalizes classifiers that are confident about an incorrect
classification.

Figure 2: Log Loss Visualization: Low probability values are penalized significantly more.
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After training for a while, if the Generator and Discriminator have enough capacity (if the networks can
approximate the objective functions), they will reach a point at which both cannot improve anymore. At
this point, the Generator generates realistic synthetic data, and the Discriminator is unable to differentiate
between the two types of input.

Since during training both the Discriminator and Generator are trying to optimize opposite loss functions,
they can be thought of two agents playing a minimax game with value function V(G,D). In this minimax
game, the generator is trying to maximize it’s probability of having it’s outputs recognized as real, while the
discriminator is trying to minimize this same value.

minGmaxDV (D,G) = Ex pdata(x)[logD(x)] + Ez pz(z)[log(1−D(G(z))]

Thus, the gradient expression we train the discriminator on is as follows:

∇ 1

m

m∑
i=1

[logD(xi) + log(1−D(G(zi))]

where x is the real data in a given batch, z is the noise for the generator for the given batch, D is the
discriminator function, and G is the generator. We want to maximize this expression. The first expression in
the summation, logD(xi), corresponds to the discriminator output on real data; we clearly want to maximize
this probability. The second is a bit more complicated: the D(G(zi)) corresponds to the discriminator’s
probability estimate that the generated data is real. We want to minimize this, so we make the term
log(1 − D(G(zi)). If you haven’t taken multivariable calculus yet, think about the ∇ as a derivative; we
simply want to move in the direction that maximizes the summation.

The gradient expression we train the generator on is as follows:

∇ 1

m

m∑
i=1

log(1−D(G(zi))

We want to minimize this expression (i.e. we want to maximize D(G(zi)), the probability of the generated
data being real, as determined by the discriminator).

Note that GANs are notoriously difficult to train. This is because GANs are highly unstable; in order to
train correctly, we need the generator and discriminator to be roughly on equal levels throughout the training
process. If the discriminator overpowers the generator, there will be little gradient for the generator to learn
upon; vice-versa, and we run into mode collapse, where the generator produces outputs with extremely low
variety.

5 Applications

GANs are not yet frequently used in applications at the high school level, so finding a decent (novel)
application for them could be a great project idea.

Here are some examples:
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Figure 3: Image generation.

This has been done with a variety of GANs (e.g. Wasserstein GAN), and can be done (with limited
success) with vanilla GANs. There are also architectures that convert a caption to an image, with remarkable
success (e.g. StackGAN++).

Figure 4: Caption generation.

Conditional GANs (as well as RNNs) have been used, to much success, for this task.
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Figure 5: Image mapping.

Two prominent networks for this task are the pix2pix network (Conditional GAN) and the CycleGAN.
The results, as you can see, are quite impressive, and can be extended to a variety of image-based tasks.

Figure 6: Super-resolution.

GANs have been used in the task of super-resolution, interpolating finer texture details that are lost in
a low-res image. The most prominent architecture for this task is the SRGAN. The SRGAN has been used
to moderate success (though MOS scores are subjective and difficult to validate).
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6 CycleGAN

Figure 7: The CycleGAN.

The goal of the CycleGAN is to learn a mapping G that translates a source domain X to a target domain
Y given unpaired images.

However, the problem of learning G such that G(X)→ Y is that the mapping G is very under-constrained
(in other words, there are many ways that G can minimize loss of the dataset as a whole while producing
qualitatively not-very-good individual images). The basic approach of the CycleGAN, thus, is to ensure
cyclic consistency by introducing an inverse mapping F (a third network) and a cyclic consistency loss that
enforces F (G(X)) ≈ X and G(F (Y )) ≈ Y .

As usual, the loss for G is

minGmaxDY
logDY (xi) + log(1−DY (G(zi))

An analogous loss is used for F .
However, a new term is introduced for cyclic consistency:

λ||F (G(x))− x||1 + ||G(F (y))− y||1
The L1 norm was selected based on empirical data.

The final loss, then, is the sum of these three individual losses.
Let’s say we want to convert real images into Van Gogh paintings and vice versa. Overall, the network
design would look like this:

• A generator G to convert a real image to a Van Gogh style picture.

• A generator F to convert a Van Gogh style picture to a real image.

• A discriminator Dy to identify real or generated Van Gogh pictures.

• For the other direction, we reverse the data flow and build an additional discriminator Dx to identify
real images.
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7 Conclusion

GANs are incredibly useful models; however, training them can be very difficult. GANs are continuously
being improved to increase stability and to accommodate different types of input. Stay tuned for more
lectures later on GAN improvements and such.

We hope to see more GAN projects in the coming months, and we’re confident that there are many
unexplored uses for them.

For more tips on training a GAN, see this link [https://github.com/soumith/ganhacks]. Seriously. It’ll
be useful.

For an example of a GAN, see this link. [https://github.com/jacobgil/keras-dcgan/blob/master/dcgan.py]
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