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1 Introduction

Convolutional Neural Networks (CNNs) have played a key role in the develop-
ment of Deep Learning. A prior lecture covered the basics of CNNs. In this
lecture, we will explore the aforementioned topics.

1.1 Background

Prior to getting into the main section of this lecture, I thought it would be cool
to give some historical background about CNNs. They’ve actually been around
since the 80s, but have only recently risen to popularity. This occurred when
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton 1 from the University
of Toronto created a CNN that they called the AlexNet in 2012.

This model beat out past algorithms on the ImageNet benchmark challenge
by a significant margin. The ImageNet challenge involves classifying an image
into one of 10,000 labels (i.e dog, cat, car, plane, etc) 2. The AlexNet paper
spurred further research into CNNs and Deep Learning in general. It is said to
be a seminal work in both the Computer Vision and Deep Learning research
communities.

2 Review of CNNs

2.1 The Convolution Operation

As you may recall, a CNN works well on images because it is able to make use
of spatial data. The convolution operation condenses information from several
pixels into one output node in the following layer. This can be visualized by the
following diagram.

1Geoffrey Hinton is commonly referred to as the godfather of Deep Learning. He recently
won the ACM Turing Award, one of the highest awards in computer science, for his work on
neural networks. He’s a super cool person and you should definitely check out some of his
interviews/talks if you have the time.

2The scoring actually involves the top five predictions of the model. So, let’s say that for
a given image, the model predicts cat, dog, ship, train, and bus in that order. If the correct
label for the image was dog, then that image would be considered to be classified as correct.
While it doesn’t make sense in this example (as the categories are very different from each
other), it is used in the ImageNet challenge because the categories are not very distinct from
each other.
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Let’s walk through a simple convolution operation. Note that I use the
multiplication operation for the convolution operation:1 2 3

4 5 6
7 8 9

 ∗
[
1 2
3 4

]
=

[
37 47
67 77

]
(1)

Following standard naming conventions, I will refer to the second matrix as
the kernel.

The top-left value (37) is calculated as the following: 1∗1+2∗2+4∗3+5∗4.
The top-right value (47) is calculated as the following: 2∗1+3∗2+5∗3+6∗4.
You can visualize the process as if you are sliding the kernel across the

original matrix and multiplying the values that are on top of one other and
subsequently adding all these values. The sum is then placed in the output
matrix.

In practice, during backpropogation, the model would update the kernels for
each layer, as well as its biases.

The convolution operation is the heart of the CNN (hence, the name). This
operation allows for the network to view each pixel in its spatial context. That
is, it can view each pixel with respect to the pixels close to it. This is helpful,
since it allows the network to more easily detect features such as edges and
more complex shapes. This is in contrast to a regular neural network, which
would have to learn the relationships between nearby pixels (which unnecessarily
wastes time and computation). In essence, by using the convolution operation,
we are forcing the network to look at surrounding data.

2.2 Pooling and Fully Connected Layers

In a CNN, convolutional layers are stacked together, along with pooling layers
(a method of rapidly condensing the information in a layer). In max-pooling
layers, a popular type of pooling layer, the maximum value in one section of a
matrix is kept and the rest are discarded. A max-pooling layer is depicted here:
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Fully connected layers are placed at the end of the networks. The activations
of the previous convolutional layer are unrolled into these fully connected layers.
If the problem that the programmer was trying to solve was a classification
problem, perhaps she would add a softmax layer at the end.

The end result looks something like this:

View the original CNN lecture for more information on pooling layers, acti-
vation functions, stride lengths, and other pertinent topics.

3 Transfer Learning

Practicing transfer learning is a great way to alleviate some of the computational
and time requirements necessary to train a CNN (or a basic neural network).
However, prior to exploring transfer learning, it is essential that one understands
what a Convolutional Neural Network is learning at each layer.

3.1 What are CNNs learning?

In the initial layers of a CNN, each output node in the layer corresponds to a
small portion of the actual image. This can be seen in the first layer of the
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CNN above. The node depicted in the first hidden layer only ”views” a small
portion of the car, specifically the left-middle section. So, the information gained
in these layers about the image corresponds to small, minute features such as
edges. In the later layers, all this information is then compounded together to
detect more complex features. This can be seen in the following image.

3.2 Transfer Learning in Practice

Transfer learning takes advantage of the fact that small features, such as edges,
are found in many different types of images. So, the initial layers of a CNN
trained on one dataset can be useful for classifying many images (even images
from a different dataset). Libraries such as Tensorflow and Keras already have
CNNs pretrained on datasets such as ImageNet. With just a couple of lines of
code, you can import such a CNN and use it out of the box. However, let’s as-
sume that you want to train this CNN for your own task. Instead of training the
whole network again on your images, which can be extremely computationally
intensive, we can choose to only train the later layers of the network and freeze
the initial layers. In other words, we will not be conducting backpropagation
on the weights corresponding to the initial layers of the network.
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Why does this work? Remember that the initial layers of a network can be
viewed as feature extractors. The entire function of these initial layers is only
to detect small features such as edges. The initial layers do not depend very
much on the context of the dataset that you are training on. By freezing the
initial layers, you can save time and computation during training. And you’ll
still be allowing your model to learn to detect the larger features that are specific
to your problem (i.e faces, cats, dogs). This works very well if the datasets that
the model was trained on initially is similar to the dataset you’re trying to train
you model on.

4 Neural Style Transfer

A very exciting and fun application of CNNs is Neural Style Transfer (NST).
NST involves taking two images, a content image C and a style image S and
combining them to generate an image Y . Here are several examples of NST in
practice:
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As you can observe, the content image (the cat) and the style painting (the
paintings) are combined to create a hybrid image. Let’s explore how this works.

4.1 Cost Function

Let’s define a cost function J(Y,C, S) that inputs the generated image and
outputs how ”good” it is, ”good” being a measure of how well the styles of C
and S were combined.

We will see later that by minimizing this cost function, we can generate an
image with the styles/contents of both C and S taken into account.

Let’s define J(Y,C, S) more formally. It will have two components.

J(Y,C, S) = αJcontent(C, Y ) + βJstyle(S, Y )

Jcontent(C, Y ) measures the dissimilarity between the content image C and
the generated image Y . Jstyle(S, Y ) measures the dissimilarity between the style
image S and the generated image Y . α and β are hyperparameters that the
user can tune to adjust how much style is adopted from C and S respectively.

We will initialize the generated image Y randomly. It will start off as noise.
As we perform gradient descent on the aforementioned cost function, the dis-
similarity, or error, of our image will be minimized. The image will go from
random noise to a mix between the styles of C and S. Let’s now define the two
components of the cost function.

4.2 Content Cost Function

This section will define the process for calculating Jcontent(C, Y ). To do this,
we will pass both C and Y through a CNN pretrained on a dataset such as
ImageNet. However, we will not pass the image through the whole CNN. In-
stead, we will stop the image in one of the hidden layers of the CNN (i.e. one
of the middle layers). We will then extract the activations in this layer for both
the C and Y images. We shall denote the activations for C as a(l)C and the
activations for Y as a(l)Y . Note that the superscipts are not exponents. Also
note that l, the layer from which we are extracting the activations, remains the
same for both C and Y . We will define Jcontent(C, Y ) as the following:

Jcontent(C, Y ) =
1

2

nl
H∑

i=1

nl
W∑

j=1

(a
(l)Y
ij − a

(l)C
ij )2

The derivative of this component of the loss with respect to the activation
of the generated image is the following:

∂Jcontent

∂a
(l)Y
i,j

=

{
(a

(l)Y
i,j − a

(l)C
i,j ) if a

(l)Y
i,j > 0

0 if a
(l)Y
i,j < 0
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Note that the cost function is simply the sum of squared differences between
the two activations. Also note that we did not index into the channels of the
layers. Only one channel should be used.

If the two activations are similar, this output of this function will be mini-
mized. If the two activations are dissimilar, the output of this function will be
high. This is exactly the behavior we wanted!

Note that the regularization term 1
2 is simply a regularization term.

l is a hyperparameter that can be adjusted by the user. Think back to the
discussion about what the layers in a CNN are doing. If you set l to be an
earlier layer of the network, the two images will need to be very similar for
Jcontent(C, Y ) to be low. Why? Because, as mentioned before, the initial layers
of a CNN are detecting small features, such as edges. For the two activations
to be similar, these features must be present in both images. However, if you
pick a later layer to be l, the images do not need to be very similar, since the
later layers of the network will be detecting larger features (such as faces, cars,
buildings, etc.). Thus, l is a hyperparameter that you should mess around with
when implementing NST.

4.3 Style Cost Function

Let’s now define the Style Cost Function Jstyle(S, Y ). The Style Cost Function
is a bit more complicated. You might ask why it should be any different from
the Content Cost Function. The Content Cost Function only needs to find the
difference between the activations, since it’s judging the difference in content.
Content can be thought of as the specific objects in the image. Since the objects
are most likely encoded as features in the CNN (possible features that the later
layers of a CNN may be looking for are face, truck, bridge,etc.), it makes sense
to compare activaitons. However, style is a bit more nuanced, since it relates to
the texture and color of an image.

How should we define style then? The authors of the NST paper defined style
as the correlation between activations across channels. What do they mean by
this?

If you recall, as you progress into later layers of a CNN, the number of
channels generally increases. For the purpose of understanding, imagine if each
channel in a hidden layer is like a neuron corresponding to some feature.
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Perhaps one channel (the red channel) is detecting horizontal lines in an
image and another channel (the yellow channel) is detecting bluish-color. By
measuring the correlation between these two channels in the activations of the
network when an image was passed through, we can see if both horizontal lines
and bluish color coexist in the image that was passed through.

If the two channels were not correlated, the two features they are detecting
most likely do not coexist in the image that was passed through the network.
On the other hand, if the two channels are correlated, then those two features
do coexist together in the image.

To quantify the amount of correlation there is between the activations of all
the channels in a hidden layer, the researchers used the Gram Matrix.

Gl =

 G
l
11 Gl

12 . . .
...

. . .

GnC1 GnCnC


In the Gram matrix, Gl

kk′ is defined as the following:

Gl
kk′ =

nl
H∑

i=1

nl
W∑

j=1

alijka
l
ijk′

Note the intuition behind this idea. We are essentially doing element wise
multiplication on all the values in one channel of the hidden layer with the
corresponding value in the second layer and summing all these values together.
Notice that if both channels k and k′ are activated by the image, the corre-
sponding Gkk′ will be large as well.

You would calculate this Gram matrix for both the style image and generated
image using the activations from the same layer. These matrices give us a style
representation of both the image S and the image Y .

Since we have the Gram matrices for both the style image S and the gen-
erated image Y , we can quantify the difference between the two. You can now
define Jstyle(S, Y ) as the following:

J l
style(S, Y ) =

nl
C∑

k=1

nl
C∑

k′=1

(G
[l](Y )
kk′ −G

[l](S)
kk′ )2

Here, G[l](S) refers to the Gram Matrix calculated for the Style image at
layer l. G[l](Y ) refers to the Gram Matrix calculated for the generated image at
layer l.

The authors of the NST paper also included a regularization term for this
portion of the following. If you include it, the cost function looks like this:

J l
style(S, Y ) =

1

(2nlHn
l
W )2

nl
C∑

k=1

nl
C∑

k′=1

(G
[l](Y )
kk′ −G

[l](S)
kk′ )2
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A common practice that researchers have found to be effective is to sum
together the expression above for several layers (some of them being initial
layers of the CNN and some of them being later ones). Doing this has led to
clearer images. You can define this final cost function as the following:

Jstyle(S, Y ) =

n∑
l=0

λlJ
l
style(S, Y )

where l1 is the first layer in the list of layers you’re using, ln is the last layer
in the list of layers, and λl is the parameter for each layer you are using. You
should experiment with different numbers of layers that you use.

The derivative of Jstyle(S, Y ) with respect to the activations in layer l are
the following:

∂Jstyle

∂a
(l)Y
i,j

=

{
1

N2
l M

2
l

((a
(l)Y
ij )T (G

[l](Y )
ij −G

[l](S)
ij )) if a

(l)Y
i,j > 0

0 if a
(l)Y
i,j < 0

This looks messier than it is due to the notation that I used. The paper that
introduced NST used a different notation, and the end derivative looked neater
than this. I chose not to use the notation in the paper because the symbols they
used seemed a bit arbitrary.

4.4 Wrapping Up

We now have all the components to implement NST. Using gradient descent
(or some other optimization algorithm), we can alter the generated image G to
minimize the error for the cost function:

J(Y ) = αJcontent(C, Y ) + βJstyle(S, Y )
We can do this by using the aforementioned derivatives calculated with re-

spect to the activations of the generated image.
If you would like, you can mess around with this neat web-application im-

plementing NST yourself at the following link:

https://tenso.rs/demos/fast-neural-style/

5 Residual Networks

As a Deep Learning practitioner, you may expect that as you make your neural
network deeper (i.e. you add more layers), your model will be better able to
approximate the mapping between your input and output. Unfortunately, this
is not always the case. This is because of the vanishing gradient problem.

5.1 Vanishing Gradient Problem

It can become increasingly difficult for neural networks to learn useful features
as their depth increases. This is because the gradients of the weights of the
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network can decrease exponentially as backpropagation modifies the weights of
earlier and earlier layers. You can think of this as a compounding effect. If the
gradient for a layer becomes too small, it will not learn much during training,
as the updates to the weights will be incremental. And so, the network will not
be able to learn the mapping from the input to the output. The effects of this
can be visualized in the following image.

Instead of the network approximating the function better as the depth in-
creases, the performance of the neural network actually gets worse. How can
we fix this?

5.2 Residual Connections

In 2015, researchers from Microsoft came up with a solution to solve this prob-
lem: residual connections, or ”skip” connections. In residual connections, the
activations from one layer in the network are passed into a layer deeper into the
network. This can be visualized by the following diagram:

More formally, the output from Layer n is being fed to another layer n + k
such that the it is added to the activations before the nonlinearity function is
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applied. To make this clearer, let us refer directly to the diagram above3. Let’s
refer to X as a0, referring to the fact that this is the input data.

a1 is calculated as you would expect in a regular neural network.

a1 = g(W1 ∗ a0 + b1)

where g(x) is your activation function (in this case, RELU), W1 is the weight
matrix for the first layer, and b1 is the bias vector for the first layer.

Now, the process for getting a2 is a bit different, as this is the layer where
the residual connection lies.

a2 = g((W2 ∗ a1 + b2) + a0)

where g(x) is your activation function (in this case, RELU), W2 is the weight
matrix for the second layer, b2 is the bias for the second layer, and a0 is the
input data.

Note the key difference between the calculation of a2 and the calculation of
a1. In the calculation of a2, we add a0 prior to applying the RELU function.
This is the core idea of residual connections. Researchers have shown, through
empirical evidence, that by adding these skip-connections, the neural network
can overcome the vanishing gradient problem. One common line of thought as
to why residual connections work so well is the following:

Even if the expression (W2 ∗ a1 + b2) equates to zero (as can happen due
to weight decay during gradient descent), the layer can still easily learn the
identity function (assuming we are using the RELU as our activation function
and that a0 is positive), since we are also adding a0. So, even in the worst case,
we will not have hurt our model, since it will still maintain the same activation
as the previous layer. In other words, adding residual connections makes sure
that adding more layers does not hurt the performance of the model.

Note that by using residual connections, you will not be increasing the com-
putational requirements of your model. Using residual connections does not
require additional parameters (unless the activation you are feeding in is of dif-
ferent size to the output you are feeding to, i.e. if a0 was a different size from
W2 ∗ a1 + b2, in which case you would need a weight matrix to convert a0 to
the same dimensions as W2 ∗ a1 + b2). No major changes need to be made in
order to make use of residual connections. You can still use Stochastic Gradient
Descent or any other optimization algorithm that you are accustomed to using.

In practice, if you want to use residual connections in a CNN, you should
use a pretrained version of the ResNet, found on Keras and Tensorflow. This
model is visualized in the following image:

3Note that for this example, I treat the model as a regular neural network, not a CNN.
The procedure is similar for a CNN.
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You can make use of transfer learning to train this model on your own
dataset.

You might be wondering why this content was included in this lecture. That’s
because the aforementioned researchers first introduced residual connections in
the context of Convolutional Neural Networks. Residual connections are also
mainly used in the context of Convolutional Neural Networks.

6 A High Level Overview of Object Detection

Up till now the networks that we’ve discussed can be used to perform classifi-
cation, i.e. they can tell whether the image contains a cat or a dog. However,
some problems require more than simply classifying what is in the image. One
example of such a problem is the self-driving car. A self-driving car should
not just detect whether or not the main object in an image is a person. A
self-driving car should instead detect and classify every single important object
in an image (i.e. car, truck, traffic light, pedestrian, etc.). Such an output is
depicted below:

How do we go about this task? In the following section, we will discuss a
popular object detection algorithm called the Faster-RCNN. For brevity (this
lecture has already gotten pretty long), I will not go into the lowest level of
detail. Instead, I will focus on the aspects of the model necessary to understand
its functionality. Let’s get started.

6.1 Faster-RCNN

The Faster-RCNN is an object detection model that arose from years of experi-
mentation. Before the Faster-RCNN, there were the RCNN and the Fast-RCNN
(such creative names). The Faster-RCNN is the latest iteration of these models.
It is depicted in the following image:
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6.1.1 Initial Convolutional Layers

The first component of this model is the convolutional block. The raw image
is first fed through these convolutional layers. The output of these layers is a
feature map, from which the rest of the model is based off of.

6.1.2 Region Proposal Network

The Region Proposal Network (RPN) is a core component of the Faster-RCNN.
From the feature map generated from the initial convolutional layers, the RPN
detects portions of the images which potentially contain distinct objects. This
is done by training a small CNN on a multi-task loss function.

For each region that the RPN proposes, the RPN also outputs a classification
score, which is how sure the RPN is that there is an object in that section of
the image. The disparity between this score and the ground-truth classification
score is quantified by the classification loss.

The RPN proposes regions by outputting for pixel coordinates. These pixel
coordinates form a bounding box. The disparity between this predicted bound-
ing box and the ground truth bounding boxes, provided by an annotated dataset,
is quantified by the bounding box regression loss.

This multi-task loss-function takes into account both the classification loss
and the bounding box regression loss while training.

Note that there was a lot glossed over in this section, including how the RPN
uses anchors to output the prediction.

6.1.3 ROI Pooling

Once the RPN outputs regions of the image in which there are potentially
objects, each of the regions goes through ROI pooling. This essentially warps
each region proposal into a standard size so that they can be fed into a classifier
for predictions. While this can be done very simply, the ROI pooling is used
because it is differentiable, meaning it can be adjusted and improved as we
conduct backpropagation.
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6.1.4 The Rest

The rest of the Faster-RCNN is the exact same as the end of the Fast-RCNN, as
depicted above. From the ROI pooling layer, the data flows to fully connected
layers which are connected to a softmax classifier and bounding box regressors.
These are again trained on a multi-task loss function. And that’s it!

Note that there are several other object detection algorithms including YOLO
and SSD.

7 Conclusion

The topics discussed in this lecture are only several of many. These topics were
simply an assortment of those that I found particularly interesting or useful.
There are many more interesting topics related to CNNs that I have not covered.

CNNs have been a core part of Deep Learning research and will most likely
continue to do so in the future.
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