
Genetic Algorithms

Soham Gandhi

March 27, 2019

1 Introduction

Genetic algorithms are based off of Charles Darwin’s Theory of Evolution. In a genetic
algorithm, there are four main parts: fitness, selection, crossover, and mutation.

2 Fitness

The first part is the fitness function. This determines how close the object is from the
target. If an object has a high fitness then it returns a higher value and if the object
has a lower fitness it returns a lower value. This ensures the fittest will have offsprings
while the others will be removed. For example with neural networks the functions that
has the best loss values are chosen and then are used to create off-springs.

3 Selection

The selection process is quite simple and this is where you choose the best objects that
you would like to move on with and the ones you would like to drop. Normally the
ones that are chosen are the ones with the highest fitness score and the lower ones are
dropped.

1

4 Crossover

The crossover process varies depending on exactly the application. For example if we
were trying to see how many iterations it will take for the algorithm to generate a certain
word we would do every combination of a string. If we are trying to get the best neural
network then we may have every single possible combination of features for the input.
This is a very customized method for the specific application that the genetic algorithm
would be used for.

5 Mutation

This is the last step. This part insures that in no point in time our code becomes
obsolete or stops learning. In this method you usually select around ten percent of the
algorithms and then make some mutation to it. For neural nets this maybe simply an
addition or a deletion of a feature. However, for other applications you could swap
characters or remove characters. The sole purpose of this method is to make sure that
the code does not at any point in time become stagnant.

6 Example

This example is using randomly generated words and is trying to find the target word.

import random

import string

import itertools

from difflib import SequenceMatcher

These are simply all the basic imports that are already a part of the python library.

target = "hsasd".upper ()

This is the word we are trying to find. The word is in upper case so that the process
is quicker but it is also possible to do it without it being uppercase and it could even
include special characters.

class Word:

def __init__(self , word):

self.word = word

def fitLevel(self , fitness =0.0):

self.fitness = fitness

def getFit(self):

return self.fitness

def getWord(self):

return self.word

def setWord(self , word):

self.word = word

This is a small class that I created to help out with the fitness process. It is not required
but helps out a lot when it comes to organization.

2

def populate(x=[]):

for i in range (5):

p1 =

Word(word=(’’.join([random.choice(string.ascii_letters)

for n in range(len(target))])).upper())

x.append(p1)

return x

This method creates randomly 5 words which are used to start off with.

def fitness(x=[]):

z = [0.0, 0.0]

maxrate = 0.0

smaxrate = 0.0

for i in x:

d= SequenceMatcher(None , target , i.getWord ()).ratio()

i.fitLevel(d)

for i in x:

if(i.getFit () > smaxrate):

if(i.getFit () > maxrate):

smaxrate = maxrate

maxrate = i.getFit ()

z[1] = z[0]

z[0] = i

else:

smaxrate = i.getFit ()

z[1] = i

return z

This method calculates how much the word matches with the target word and selects
the two words that match up with the target word the most.

def offsprings(x=[]):

f = list(x[1]. getWord ())

x = list(x[0]. getWord ())

for i in x:

f.append(i)

final = list(itertools.permutations(f))

final2 = []

for i in final:

p = i[0] + i[1] + i[2] + i[3] + i[4]

final2.append(p)

p = i[5] + i[6] + i[7] + i[8] + i[9]

final2.append(p)

return final2

This method creates all of the offsprings. This is not the most efficient method for
memory or CPU since it creates a lot of possibilities. However, it is easy to understand
and does the job for this case.

3

def mutate(x=[]):

for i in range(int(len(x)/100)):

d = random.randint(0, len(x))

p = list(x[d])

p[random.randint(0, len(p) -1)] = "" +

random.choice(string.ascii_letters).upper ()

x[d] = ’’.join(p)

return x

This method mutates one percent of all the words. It randomly chooses a word and
then an index and finally a character. This ensures, as mentioned previously, that the
code does not become obsolete.

x = populate ()

state = False

right = ""

while(state == False):

x = offsprings(x=x)

x = mutate(x=x)

for i in x:

if(i == target):

state = True

right = i

break

d = []

for i in x:

d.append(Word(i))

x = d

print(right)

Finally this is the actual code that runs all of the methods above until the target word is
achieved. Depending on the length, number of characters, and other features this could
take minutes, hours or even days for something like a neural net. However, genetic
algorithms offer many benefits such as being able to figure out the best neural net for a
certain problem.

4

