
Generative Adversarial Networks: Part II

Nuha Mohammed

June 2019

1 Introduction

We will explore common problems in GAN training and take a deeper dive
into a few different iterations of GANs that have been introduced after Ian
Goodfellow’s initial paper.

2 Review

Generative Adversarial Networks (GANs) consist of two neural networks: a gen-
erator and a discriminator. These two models are trained at the same time; the
generator tries to recover the training set while the discriminator estimates the
probability that the a given sample came from the training set rather than the
generator. Ultimately, the generator learns to recover the training distribution
and the discriminator outputs 0.5 for all samples, meaning it was equally likely
to have come from the generator as from the training set.

3 Problems in Training

3.1 Non-convergence

The convergence of GAN training near an equilibrium can be assessed by looking
at the Jacobian matrix of eigenvalues (i.e. the matrix of partial derivatives) at
that point.

υ(θ, ψ) =

(
−∇θL(θ, ψ)
∇θL(θ, ψ)

)
(1)

The Nash equilibrium occurs at a specific parameter assignment where the nei-
ther the generator nor the discriminator will change its action regardless of what
the other will do. Note that GANs may not always converge and this is where
problems in training originate.

1



3.2 Mode Collapse

Mode Collapse occurs when there is no progress in optimization and all input
images map to the same output image

3.3 Diminished Gradient

In many GANs, in the cost function, the gradient vanishes as the discriminator
becomes optimal which means learning gradually becomes harder.

In a neural network, the gradient is integral for gradient descent to back-
propagate the signal. Therefore, diminished/vanishing gradients make learning
harder.

4 DCGAN

4.1 Strided Convolutions

Deep Convolutional Generative Adversarial Networks (DCGANs) use strided
convolutions for the Discriminator and fractional-strided convolutions for the
Generator (instead of pooling layers). You can refer to the CNN lecture to re-
fresh your memory on strided convolutions which is a method of spatial down-
sampling. Using strided convolutions instead of pooling allows the network to
”learn” its own downsampling, contributing to greater stability in training this
GAN architecture.

Figure 2. DCGAN Generator with strided convolutions for spatial downsam-
pling.

4.2 Batch Normalization

Another feature of DCGAN is the use of batch normalization (batchnorm) in
both the generator and discriminator. With batchnorm, the output of a previ-
ous activation layer is normalized by subtracting the batch mean from it and

2



dividing by the batch standard deviation. In practice, batchnorm helps prevent
mode collapses and helps with gradient flow in deeper models.

4.3 Activation Functions

DCGAN uses ReLU activation in all layers of the generator except for output
layer which uses Tanh. The discriminator uses the leaky ReLU function which,
in contrast to the regular ReLU function, allows small negative values to pass
through (*ReLU truncates negative values to 0). Therefore, leaky ReLU helps
with gradient flow in the discriminator.

5 ProGAN

ProGAN was a major improvement to GANs by NVIDIA. It proposed the pro-
gressive growing of the GAN, a layer at a time. The GAN starts out by pro-
ducing very low resolution images. Everytime training stablizes, a new layer is
added and the resolution is doubled. This process continues until the desired
resolution is reached. ProGAN provides a stable way of training GANs at higher
resolutions.

3



6 CycleGAN

CycleGAN is different from conventional GANs as it has to do with style trans-
fer. Furthermore, CycleGAN deals with image-to-image translation with un-
paired training samples which consist of a source set and target set with no
pairs between the two datasets.

This type of mapping is prone to mode collapse. CycleGAN combats mode
collapse by introducing a new loss function for ”cycle consistency”.

4



6.1 Loss Function

If we define a translator F and another translator G, the cycle consistency loss
promotes F and G to be inverses of each other. It follows that F(G(X))x and
G(F(x))y. This cycle consistency loss is combined with the adversarial loss.
Adversarial Loss is expressed as that of a conventional GAN.

While, cyclic consistency loss is expressed as such:

Both are combined to yeild this loss function:

and the GAN aims to solve the following:

7 Challenge!

Complete the two challenges below!
1. Implement a DCGAN
2. Build a CycleGAN and use it to translate emojis between Windows and
Apple emojis.

5



Instruction for both assignments are here:
https://www.cs.toronto.edu/ rgrosse/courses/csc3212018/assignments/a4−handout.pdf

Shell Code here (scroll down to ”Programming Assignment 4”):
http://www.cs.toronto.edu/ rgrosse/courses/csc3212018/

8 Acknowledgements

I did not create any of the images in this lecture. I acquired images and infor-
mation from the following sources:

• DCGAN paper

• CycleGAN paper

• ProGAN paper

• OpenAI’s blog on GANs

• Medium’s articles on GANs

• ML Club’s GAN lecture

*The Challenge problem was taken from Univeristy of Toronto’s CSC321 course.

6


