
Reinforcement Learning

Jenny Li

May 2019

1 Introduction

Reinforcement learning is a type of machine learning in which an agent learns
to perform specific actions in an environment that lead it to maximum reward.
Because RL models learn by a continuous process of receiving rewards on every
action, it can be trained to respond to unforeseen environments.

A RL setup consists of an agent (the RL algorithm) and an environment
(the object the algorithm acts on). Basic reinforcement is modeled by a Markov
decision process (MDP), which consists of states, actions, and rewards.

At each discrete time step, the agent receives a state from the environment.
Based on the state, the agent chooses an action, and the environment subse-
quently transitions into a new state. The environment gives a reward to the
agent associated with the transition.

1.1 Policy and Value Functions

The strategy that the agent employs to determine its next action is called policy.
There are two types of policy functions:

1. Deterministic: always returns the same action at a given state.

a = π(s)

2. Stochastic: outputs a distribution probability over actions.

π(a|s) = Pr(at = a|st = s)

1

The goal of the agent is to maximize its cumulative reward, which for each
time step is expressed as a sum of future discounted rewards

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =

∞∑
k=0

γkrt+k+1

where γ ∈ [0, 1] is the discount-rate.
The state-value function tells us the maximum expected future reward the

agent will get at each state. Starting with state s and following policy π, the
function is

Vπ(s) = Eπ[Rt|st = s].

When V is maximized, the policy is most optimal.
It is also useful to define the action-value function, which returns the ex-

pected future reward of an action a at state s following policy π.

Qπ(s, a) = Eπ[Rt|st = s, at = a]

1.2 Monte Carlo vs. Temporal Difference

There are two different ways of learning. In the Monte Carlo approach, re-
wards are received when the agent reaches a “terminal state.” The agent looks
at the total cumulative reward and adjusts its estimates, restarting with new
knowledge.

TD methods, however, adjust predictions about the future before the final
outcome is known. The algorithm updates value estimates by approximating
the rewards at each time step.

1.3 On-Policy vs. Off-Policy

An on-policy agent learns value estimates based on its current policy, while its
off-policy counterpart learns them based on another policy. We will see this
when examining Q-learning and SARSA.

1.4 Exploration and Exploitation

1. Exploration: finding more information about the environment.

2. Exploitation: using known information to maximize the reward.

The goal of our agent is to maximize the expected cumulative reward. However,
without a proper balance between exploration and exploitation, the agent may
fall into a trap where it repeatedly exploits rewards that are ”closer,” even if
they are small. This means it will not uncover possible larger rewards.

To address this issue, we must define a rule that handles the exploration-
exploitation trade off.

2

2 Value-Based RL

In value-based RL, the goal is to optimize Vπ(s) or equivalently, Qπ(s, a), with-
out implementing a policy.

2.1 Q-Learning

Q-learning is an off-policy RL algorithm that is used to optimize the action-
value function. As the agent explores the environment, the algorithm iteratively
updates Q(s, a), giving us better and better approximations for the Q-values.
Based on the well-known Bellman equation (which converges to the optimal
value), the update function is

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)]

where α is the learning rate.

2.2 SARSA

State–action–reward–state–action (SARSA) is similar to Q-learning, but it is
an on-policy algorithm. This means that SARSA learns the Q-value based on
the current policy instead of the greedy policy. The update equation is

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

where α is the learning rate.

2.3 Deep Q-Learning

With large state spaces, Q-learning or SARSA is impossible. In Deep Q-
learning, a Deep Q neural network approximates, given a state, the different
Q-values for each action.

The error is calculated by taking the difference between the maximum pos-
sible value from the next state and the current prediction of the Q-value.

E = (rt+1 + γmax
a

Q̂(st+1, a, w))− Q̂(st, at, w)

3

We use backpropagation to update the weights of the neural network so that
the error is minimized.

∆w = α[(rt+1 + γmax
a

Q̂(st+1, a, w))− Q̂(st, at, w)]∇wQ̂(st, at, w)

3 Policy-Based RL

In policy-based RL, the goal is to directly learn the policy function that maps
state to action instead of selecting actions based on a value function.

3.1 Policy Gradients

We have our stochastic policy π that has a parameter θ and outputs a
probability distribution of actions.

πθ(a|s) = P [a|s]

We introduce a policy score function J(θ) that measures the expected reward
of the policy. The policy score function we use depends on the task.

We want to maximize the score function using gradient ascent. The policy
score function can be defined as

J(θ) = Eπ[R(τ)]

where τ represents the sequence of states, actions, and rewards.
The gradient of the score function is

∇θJ(θ) = ∇θ
∑
τ

π(τ ; θ)R(τ).

Since we don’t want to differentiate a probability function, we can change it
into a logarithm.

∇ log x =
∇x
x

∇θJ(θ) =
∑
τ

π(τ ; θ)∇θ(log π(τ |θ))R(τ)

Finally, we convert it back to an expectation and find our update function
for our parameters.

∇θJ(θ) = Eπ[∇θ(log π(τ |θ))R(τ)]

∆θ = α ∗ ∇θ(log π(τ |θ))R(τ)

4

3.2 Advantages/Disadvantages over Value-Based

1. Policy-based methods have better convergence. During training, value-
based methods can oscillate wildly because small changes in action values
may dramatically alter the the choice of actions. Policy gradients always
move smoothly toward a local maximum.

2. Policy gradients are more effective in high dimensional action spaces, or
when using continuous actions. Deep Q-learning assigns a value to each
action, which is unreasonable when dealing with continuous actions.

3. Policy gradients can learn a stochastic policy, while value functions can’t.
This easily handles the exploration-exploitation trade off.

4. Policy gradients have one major disadvantage. They often converge on a
local maximum rather than on the global maximum.

5

