
k -means Clustering

Vinay Bhaip∗

January 2019

1 Introduction

We have primarily covered a lot of supervised algorithms, where we map some
input to some output. These types of algorithms are great when we have la-
beled data. However, when we have unlabeled data, and need to find groupings
within the data, k -means Clustering is a popular algorithm to use. Clustering
algorithms are used to find data points with similar features and group them
within the data.

2 Algorithm

1. Randomly pick k points as centroids

2. Assign each data point to a group, based on whichever centroid is the
closest to it

3. Shift each of the k points to the new centroid of the points in their new
group

4. Repeat steps 2 and 3 until none of the grouping assignments change or a
certain number of iterations is reached

k represents the number of clusters that we want the data to be separated
into. To calculate the distance between the centroid and data points, we use
the squared Euclidean distance:

d(x, y)2 =

n∑
i=0

(xi − yi)
2 = ||x− y||2 (1)

where n denotes the number of dimensions.

∗Based off Sylesh Suresh’s lecture

1

3 Hyperparameter Optimization

The obvious hyperparameter within this algorithm is the value of k. For certain
problems, this can be obvious. For example, if we’re trying to cluster based off
animal species, we might already have a fixed number of groups we know. In
other cases, it might not be as clear. If we’re just given data and told to cluster
it, we need to find how to determine k.

The naive approach to this would be to just look at the data and see where
the general clusters are. Clearly, this isn’t a good approach, not only because
this introduces another degree of arbitrariness, but also because it becomes
harder to do this the more dimensions there are.

3.1 Elbow Method

A common method for optimizing the value of k is known as the Elbow Method.

Figure 1: Elbow Method

The graph shows the number of clusters, k, compared to the Within-Groups
Sum of Squares (WGSS), the sum of the distances for each of the points within
a cluster. The goal is to have each cluster contain points that are the closest to
it and to minimize the distance. Generally, as the number of clusters increases,

2

the WGSS decreases. The graph shows when k = 6, the decrease in WGSS is
minimal. This ”elbow point” is a good indicator on a sufficient k to choose.

4 k-means++

The k -means algorithm relies a lot on the initial starting k values, which can be
a problem if, for example, the k points are all near each other within the same
apparent cluster. To solve this, the k -means++ algorithm picks the starting
values of k based off a distribution.

To do this, we select the first initial point randomly from the data. From
there, we calculate the squared Euclidean distance from the closest point from
centroids we’ve chosen to each of the other data points, which we will denote as
d(xi, kj). The probability that the next initial point will be xi given that the
closest point towards it is kj goes as follows:

P (xi|kj) =
xi

n∑
i=0

d(xi, kj)))
(2)

From this we can see that points that are further apart are favored for the
initial k points. After the initial points are chosen, the algorithm follows the
original k -means algorithm.

3

