
Hyperparameters and Network Tuning

Vinay Bhaip∗

November 2018

1 Introduction

Neural networks are extremely powerful tools in machine learning that are ap-
plied to numerous problems. However, there are numerous variable hyperpa-
rameters, and there’s no real rules on how to decide what they should be. For
example, how many different layers should the network have? How many nodes
in each layer? What should the learning rate be? Adjusting the hyperparame-
ters is crucial in order to have a successful model.

2 Network Design

The first question that arises when making a model is how many layers and
nodes in each layer there should be. To begin, we know there has to be an input
layer and an output layer, which are constrained in the number nodes depending
on the problem.

For the hidden layers, there is no real guideline to follow. Generally, more
hidden layers allows the network to understand more advanced patterns, but
takes more time and data. However, this could also mean that the network might
be overfitting, which means fitting the model to the specifics of the dataset, not
the underlying patterns. In other words, the model could just be memorizing
the data. With good hyperparameters, we shouldn’t need to worry about this,
and as long as we have enough computing power, we should be able to add many
layers.

3 Regularization

Now that we know we want to have many layers in our model to have deep
learning, how do we stop overfitting? One way we can do this is through regu-
larization. Regularization modifies the loss function and punishes models that
get more and more complex. There’s 2 main regularization techniques that are
used.

∗Based off Mihir Patel’s lecture

1

1. L1 Regularization - Adds the absolute value of all the weights in a network
to the error function.

L1 = Error + λ

k∑
i=1

|wi|

2. L2 Regularization - Adds the squares of all the weights in a network to
the error function.

L2 = Error + λ

k∑
i=1

w2
i

Both of these regularization techniques minimize the complexity of the net-
work. L1 Regularization has been shown to be best at feature classification
problems, and L2 Regularization is good at essentially everything else.

4 Dropout

Another method to regularize networks is dropout. During backpropagation,
some percentage of the nodes in each layer will be ignored. This helps to create
a more robust network that isn’t dependent on just one or a few number of
nodes by making sure every node is learning some valuable information. Look
at the figure below to see how dropout works.

Figure 1: Dropout on a Network

5 Batch Size

Large datasets can obviously contain errors, like mislabeled images. If we back-
propagate after every forward propagation, the network might move have a
gradient that will shift it the wrong way. To combat this, we can adjust the

2

batch size, the number of data points that the network will forward propagate
before going through back propagation.

Having a small batch size means that the weights will update faster, but
probably less accurately, whereas having a large batch size means the weights
will update slower, but probably more accurately. Generally, we want to choose
the largest batch size that our machine’s RAM can handle.

6 Learning Rate

In gradient descent, we look for the direction of the steepest decline. Once
we have that gradient, we need to decide how far we should go down in that
direction. This value that is multiplied by the gradient is called the learning
rate. If we choose a learning rate too small, it would take forever for the network
to converge on the minimum error rate. Additionally, we could get stuck in local
minima, points where it is the lowest point relative to its location but not relative
to the entire function. See the figure below for examples of local minima. If we
choose a learning rate too large, we can accidentally skip over the minimum (if
the minimum is at 2.5 and we go from 2 to 3 with a step size of 1).

Figure 2: Minima of the Error of a Network

One possible way of addressing this is to use momentum. Momentum adds
acceleration into gradient descent. Over iterations, as the steepest decline gra-
dient is computed, the learning rate grows, picking up in ”speed”. A good way
to think of this is as if a ball was put on the error function graph. The ball
would gain speed as it goes downhill and lose speed as it goes uphill. This helps
avoid local minima as there would a large enough step size to avoid them.

3

7 Activation Functions

A major problem that arises in networks is the vanishing gradient problem. To
understand this problem, lets assume we have 4 different layers: an input layer,
2 hidden layers, and an output layer. The gradient of the error with respect to
the fourth layer bias is:

∂E

∂w4

To calculate the gradient of the error with respect to the third layer, we use
the chain rule and get:

w4 × σ′(w4 × a3 + b4)× ∂E

∂w4

In these expressions, E denotes the error, wj denotes the weight matrix of
a layer, bj denotes the bias of a layer, and aj−1 denotes the output from the
previous layer. As you may notice, there is more and more stuff that is getting
multiplied as we compute the gradient in earlier layers. As a node converges to
its optimal value, the derivative approaches 0. Although this is helpful because
we don’t want to have to retrain this node, this affects previous layers too, by
creating a smaller and smaller gradient.

Figure 3: Sigmoid Function and its Derivative

Lets look at a list of activation functions to see if we can find one that avoids
the vanishing gradient problem.

1. Sigmoid:
1

1 + e−x

This is the function we’ve been using normally in our networks.

2. Tanh:
ex − e−x

ex + e−x

4

Figure 4: Different Activation Functions

This function looks more complicated and has a more complicated deriva-
tive, which means it’ll take more time to compute. A key differentiation
between hyperbolic tan and sigmoid is that tanh ranges from -1 to 1, rather
than 0 to 1. To understand why this is important, imagine a network had
inputs that were all positive. If we were to use sigmoid, the gradients
would all have the same sign, meaning the weights can only increase or
decrease together. Tanh allows different layers to have different signed
gradients to update.

3. ReLU:
max(0, x)

This function looks a lot more simple. The derivative of ReLU, or the
Rectified Linear Unit, is very easy and fast to compute. When x is positive,
the deriviative is 1, otherwise, the derivative is 0. This avoids the vanishing
gradient problem because the derivative is just 1, so when multiplied over
and over again, the product won’t tend towards 0.

4. Leaky ReLU:
(x < 0)αx+ (x >= 0)x

The problem with ReLU is that when the input value is negative, ReLU
has a derivative of 0. If a node constantly passes in a negative value
into the ReLU activation function, then the node will not update, as the
derivative will make the gradient 0. This can occur, for example, if there
is a large negative bias in a node. Since the node will never update, it is
”dead”. Sigmoid and Tanh can also suffer from this problem, but at least
there’s a little gradient flowing through to help it recover. Leaky ReLU
seeks to solve the ”dying ReLU problem” by having a small incline on the

5

negative side of the function. In the above expression, α is a small value,
commonly 0.01. This allows ReLU nodes the chance to recover.

8 Optimizers

We’ve seen that preventing getting stuck in local minima and efficiently updating
weights is hard. To account for this, various modifications to the backpropaga-
tion algorithm have been proposed to produce more efficient weight updating
and increased stabilization. We won’t go into how they work because it’s pretty
complex. However, there are a few key features that we will highlight.

1. Learning Rate: Look at section 6.

2. Momentum: Momentum is a trick to prevent getting stuck in local minima.
At each update, we factor in the change that we did the previous step,
maintaining larger strides if our previous strides were big and vice-versa.

3. Decay: At each step, the weights are all multiplied by a constant less than
one. This prevents exploding values just like L1 and L2 regularization.

4. Epsilon: At each step, some fuzz / noise is applied to the weights and
biases, helping increase regularization.

5. Lots of other variables: Read the documentation for specific algorithms.

Here are a brief sample of some optimizers that are most commonly used.
There are lots of other ones, though in general they are very ad-hoc or outdated.

1. (Stochastic/Mini-batch/Batch) Gradient Descent: Normal updates! Basi-
cally the run-of-the-mill algorithm that involves the least amount of com-
putation.

2. RMSProp: Divides learning rate for a given weight by a running average
the magnitude of recent gradients. Useful in RNNs.

3. Adam: Also adapts learning rates for given weights. Similar to RMSProp,
but also includes momentum-like functionality. In general, this is the best
one to use.

6

