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1 Introduction

Support Vector Machines (SVMs) are one of the most popular supervised learn-
ing models today, able to perform both linear and nonlinear classification.

2 Linear Classification

The idea behind SVMs is to create a linear decision boundary called a hyper-
plane (which is a line when the feature space has two dimensions, a plane when
the feature space has three dimensions, and so on). This hyperplane is drawn
in a way that maximizes the distance between itself and the samples closest to
it in the feature space.

Figure 1: Support Vector Machine

The decision boundaries to the left separate the training data correctly but
would not generalize well to unseen data, being too close to the training samples
(i.e. having a small margin). On the other hand, the decision boundary to the
right marked by the dashed line separates the training data and generalizes well
to unseen data, having a large margin. Maximization of the margin allows for
the least generalization error.

Support vectors are the data points (which can be represented as vectors)
that are closest to our potential decision boundary. The negative support vectors
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and positive support vectors are on opposite sides of the decision boundary. The
negative hyperplane is the hyperplane closest to the negative support vectors
that is also parallel to the decision boundary. The positive hyperplane is the
hyperplane closest to the positive support vectors that is also parallel to the
decision boundary. Our decision boundary will be exactly in the middle of
these two hyperplanes.

w is defined as a vector normal to the decision boundary. The positive
hyperplane is defined as

w · xpos + w0 = 1

Here xpos represents the positive support vectors. while the negative hyperplane
is:

w · xneg + w0 = −1

xneg represents the negative support vectors. w0 is a constant that allows us to
set the equations equal to 1 or -1 respectively. The idea is that the dot product
with the positive support vectors will be greater than the dot product with the
negative support vectors.

These equations represent hyperplanes (which are simply lines in our 2-
dimensional case) because all the vectors that can be plugged in in the place of
xpos and xneg taken together construct a line. That is, if you colored in the tip
of every vector whose tail began in the origin and satisfied the above equations,
you would see two lines.

The endgame here is to choose the vector w such that the distance between
the positive and negative hyerplane (otherwise known as the margin) is maxi-
mized. To do this, we play around with the equations until we get some specific
value that we can maximize/minimize that will in turn maximize the margin.

We can combine these equations by subtracting the second equation from
the first:

w(xpos − xneg) = 2 (1)

To calculate the margin, first, let us take the difference between a positive
support vector and a negative support vector.

xpos − xneg
This will get us a vector whose magnitude represents the distance between

some line segment whose endpoints lie on each of the two hyperplanes. However,
this distance is not the perpendicular distance, which is what we are looking
for.

So, we need to take the dot product of this with a unit vector perpendicular
to the hyperplanes. We earlier defined w to be normal to the hyperplanes, so
w

||w|| serves this purpose:

w(xpos − xneg)

||w||
Using 1, we arrive at:
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w(xpos − xneg)

||w||
=

2

||w||

We must maximize 2
||w|| to maximize the margin. For mathematical conve-

nience, we can minimize
1

2
||w||2 (2)

to achieve the same effect. Of course, we’re not going to just blindly max-
imize the margin - we need an actual classifier. Thus, the constraint for this
optimization problem is that the samples are actually classified correctly:

w · xi + w0 = 1 if yi = 1

w · xi + w0 = −1 if yi = −1

where xi is a particular sample and yi is the class of the sample. More compactly:

yi(w0 + w · xi)− 1 = 0 (3)

We now have a classic optimization problem that can be solved through
Lagrangian multipliers. The takeaway here is that support vector machines
draw some linear decision boundary and maximize that boundary’s distance to
the nearest data samples so that the boundary generalizes well to new data. We
can do this by setting up some equations, doing some math magic, and arriving
at a constrained optimization problem which we can solve with multivariable
calculus.

3 Soft-Margin Classification

Most of the time, our data will not exactly linearly separable. The standard
method is to allow the SVM to misclassify some data points, and pay a cost
for each misclassified point. We can accomplish this by adding a slack variable
ξ. Our optimization problem becomes minimizing 1

2 ||w||
2 + C

∑
i ξi with the

constraint yi(w0 + w · xi) ≥ 1 − ξi. C is a regularization hyperparameter; if
C is set to be small, more misclassifications are allowed, but if C is set to be
large, less misclassifications are allowed. In the end, we are still drawing a linear
decision boundary even though the data is itself not exactly linearly separable.
We’re assuming that a linear decision boundary is a good approximation.

4 Non-binary Classification

SVM’s are inherently useful for binary classification. However, they can also be
used for data with more than two classes.
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4.1 Pairwise Classification

If we train an SVM for every possible combination of pairs of classes, we will

train n(n+1)
2 SVMs for a dataset with n classes. Classify a point by running it

through all the SVMs and adding up the number of times the point is classified
into each class. The class with the most number is considered the label.

5 Nonlinear Classification using Kernels

In the real world, data is usually not linearly separable, meaning that the sup-
port vector machine as cannot accurately separate the data, even if we try to
use a soft-margin (that is, the data is really, genuinely nonlinearly separable).
However, we can project the data onto a higher dimensional space where the
data is linearly separable using a mapping function φ(·) For example:

φ(x1, x2) = (z1, z2, z3) = (x1, x2, x
2
1 + x22)

Using this mapping function allows us to separate the two classes below (indi-
cated by red and blue) with a linear hyperplane. We can then project this back
into two-dimensional space where the decision boundary becomes nonlinear.

Figure 2: Projecting to higher space

The problem, however, with this approach is its efficiency. When solving the
optimization problem of maximizing the margin, the pair-wise dot products of
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different training samples xi and xj must be calculated, a very computationally
expensive process in high-dimensional space. To solve this, we can use the kernel
trick.

So, the problem is dot products are expensive. φ(xi) · φ(xj) is hard to
compute since there can potentially be many, many dimensions. Dot products
are nothing but a similarity measure between two vectors. There are similar-
ity functions called kernels which calculate the similarity between two vectors.
These kernels don’t map anything onto a higher-dimensional space, they sim-
ply calculate the similarity between two vectors. It turns out, though, that we
can construct kernel functions so that they implicitly calculate the dot product
in higher dimensional space without actually mapping the vectors on to that
space. That is, there are functions K(a, b) such that K(xi, xj) = φ(xi) · φ(xj).
Again, K(a, b) doesn’t actually map anything on to a higher dimensional space.
The kernel function works completely within the original feature space and cal-
culates similarity somehow within that feature space and it just so happens
that K(xi, xj) = φ(xi) · φ(xj). This is pretty cool; all we care about is the dot
products between vectors, so kernel functions are the perfect solution to our
problem. The mathematical details of how exactly we create kernel functions
so that they happen to implicitly calculate a higher-dimensional dot product in
a lower dimensional space is a bit tricky and thus out of the scope of this club.

One of the most popular kernel functions is the Radial Basis Function kernel
(RBF kernel) or Gaussian kernel:

k(xi,xj) = exp (−γ||xi − xj ||2)

γ is a free parameter that can be optimized.

6 Library

To start off the year easy, we will be using Scikit-Learn, which has multi-class
support built-in.

So, in practice, what do you need to know about support vector machines
to make them classify data well, and when should you use SVMs? If you have
a lot of features in your data, SVMs tend to be more computationally efficient
than other algorithms such as deep neural networks. Moreover, there are few
hyperparameters to be chosen (basically, there is the regularization parameter
C and the type of kernel function to use). This means that it is fairly easy to
squeeze out the classification accuracy out of SVMs. In the future, you will learn
about neural networks and their variants, which are generally the most popular
type of classification algorithm for most problems. However, they have many
hyperparameters that can be optimized, and in comparison, SVMs are much
easier to get the maximimum classification accuracy out of in a short amount
of time.

If you choose to use SVMs, the two things you need to toy around with
are the regularization parameter C and the type of kernel function. You can
choose whichever kernel function gives you the best training accuracy, and you
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can choose the value of C based on whether you are overfitting or underfitting.
Increase C if you are underfitting, and decrease C if you are overfitting.

from s k l e a rn import svm

# X = data inputs , Y = Labe l
X = [ [ 0 ] , [ 1 ] , [ 2 ] , [ 3 ] ]
Y = [ 0 , 1 , 2 , 3 ]
c l f = svm .SVC( d e c i s i o n f u n c t i o n s h a p e=’ ovo ’ )
c l f . f i t (X, Y) #tra in

dec = c l f . d e c i s i o n f u n c t i o n ( [ [ 1 ] ] )
dec . shape [ 1 ] # 4 c l a s s e s : 4∗3/2 = 6

c l f . p r e d i c t ( [ [ 2 . 5 ] ] ) #t e s t
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