
Calculus for Machine Learning

Kevin Fu

November 2019

1 Introduction

Usually, when people say “machine learning,” they’re thinking of neural net-
works. Though decision trees, SVMs, and KNNs are all forms of machine learn-
ing, more complex ML systems that classify images or translate languages are
based on neural networks. To properly understand neural networks, we’ll spend
three lectures on the topic, and give out a problem set and Kaggle competition.
This material is difficult if you don’t have the requisite calculus knowledge (and
is difficult even if you do).

For that reason, this lecture is designed to allow you to grapple with the
mathematics behind a neural network before you have to grapple with the me-
chanics of one. In a few weeks, when you’re creating your own neural networks
from scratch for the Kaggle competition, you’ll be glad you grappled now.

2 Derivatives

The derivative of a function gives us the rate of change at any point on that
function. To understand how that’s defined mathematically, it’s helpful to look
at how the derivative relates to a familiar concept: slope.

2.1 Definition

Slope is simply rise over run. For a function like

f(x) = 2x

we know the slope is 2, because the equation is in the form y = mx+b (here,
b = 0). We can check this by plugging in points, like x0 = 1 and x1 = 2, and
computing the ratio of the change in rise, or ∆y, to the change in run, or ∆x,
like this:

slope =
rise

run
=

∆y

∆x
=

y1 − y0

x1 − x0
=

f(2)− f(1)

2− 1
=

4− 2

2− 1
= 2

This works for any points x0 and x1. But what if our function is non-linear?
For example, a parabola, or f(x) = x2, has a different “slope” depending on
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what x is chosen. The function will be negative for negative x values, positive
for positive x’s, and horizontal at x = 0.

We can still approximate the slope between two points the same way we did
for the linear function. The slope at x = 1, if we use a difference in x of 1 again,
is approximately:

∆y

∆x
≈ f(2)− f(1)

2− 1
=

4− 1

2− 1
= 3

If we use smaller differences of x, we’ll get different results. Again starting
at x = 1, with the numerator rewritten to use ∆x for simplicity, we get this
formula:

∆y

∆x
≈ f(x0 + ∆x)− f(x0)

∆x

which we can apply like this:

∆x ∆y
∆x Slope

1 22−12

2−1 3

0.5 1.52−12

2−1 2.5

0.25 1.252−12

2−1 2.25

0.1 1.12−12

2−1 2.1

... ... ...

Graphically, this can be seen as taking secant lines, only with smaller and
smaller differences between the two points forming our line. (See Figure 1.)

Figure 1: A secant of x2.

What if we wanted the slope of the line tangent to the curve? (See Figure
2.) A tangent line, by definition, is the straight line that touches the curve at
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only one point, so we can’t use the same ∆x approximations we’ve been using,
since those require two points to create a ∆x from. You might be able to guess
the answer is 2, based on the table, but is there a more mathematically rigorous
way to prove it?

Figure 2: The line tangent to x2 at (1, 1).

There is, and it requires the use of limits. A tangent line is a secant line
where ∆x = 0, but if we plugged that into our formula, we’d get this:

∆y

∆x
≈ f(x0 + 0)− f(x0)

0
=

0

0

which is a nonreal answer. So instead, we take the limit of ∆x as it ap-
proaches 0:

∆y

∆x
= lim

∆x→0

f(x0 + ∆x)− f(x0)

∆x
(1)

In other words, we’re taking the slope of the secant line, but our secant line
is formed from the smallest possible distance between two points. This allows
us to approximate, as closely as mathematically possible, the slope of the line
tangent to any point on the function f(x) = x2. (Note the change to an = sign.)

The limit expression in (1) is the formal definition of the derivative. To
notate that, we can write:

dy

dx
=

df

dx
=

d

dx
f(x) = f ′(x)

which are all understood to mean the derivative of f with respect to x. The
∆ in ∆x is replaced with d to show that we’re taking the limit as ∆x approaches
0 of the whole expression.

3



Knowing the slope of this tangent line has a surprising number of real-world
applications. For instance, the tangent line on a distance vs. time graph for
a car would give the car’s velocity (how fast the car is going), and a tangent
line on a car’s velocity vs. time graph would give the car’s acceleration (how
fast the car is speeding up). But usually, neither of these graphs are a straight
line, so the only way to find velocity or acceleration is with the derivative. The
derivative of any function, like the slope of a linear function, gives us the closest
approximation for the rate of change at any point on the function.

2.2 Derivative Rules

One function you’ll want to figure out how to differentiate (take the deriva-
tive of) is the sigmoid function, because it’s commonly used as the activation
function in neural networks, which you’ll learn about next week.

S(x) =
1

1 + e−x
(2)

However, simplifying the limit expression for the sigmoid function is annoy-
ing. Luckily, we have plenty of derivative rules that allow us to skip the limit
expression altogether.

The derivative of any constant is 0. This makes sense if you think about
the slope of the function f(x) = c. It will just be a flat horizontal line, so the
slope at any point is 0. Similarly, the derivative of a linear function is just the
coefficient before x. Think of y = mx + b. The m coefficient is the slope of the
line at any point.

The derivative of the sum of two functions is just the sum of their derivatives.
Mathematically, that’s:

d

dx
(f(x) + g(x)) =

d

dx
f(x) +

d

dx
g(x) (3)

The power rule, used to differentiate functions with a constant exponent n,
is:

d

dx
xn = nxn−1 (4)

For example, the derivative of a basic parabola, or the closest approximation
for rate of change at a point on the parabola, is easily calculable using the power
rule. If f(x) = x2, then:

f ′(x) =
d

dx
x2 = 2x2−1 = 2x

So the rate of change at x = 1 is simply:

f ′(1) = 2(1) = 2

Also, exponential functions, or functions with an variable in the exponent,
can be differentiated like so:
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d

dx
ax = axln(a)

Since the only exponential part of the sigmoid function is ex, just remember
that:

d

dx
ex = exln(e) = ex (5)

The last rule we’ll need to differentiate the sigmoid function is the chain
rule, which is:

d

dx
f(g(x)) = f ′(g(x))g′(x) (6)

In words: if you have a function that contains another function, you need
to take the derivative of the outer function, plug in the inner function, then
multiply everything by the derivative of the inner function. It’s a little like
recursive calls; you have to go one layer at a time. We have to take this extra
step because the variable x affects both the inner and outer functions, so a tiny
change dx will also affect both functions. Our derivative, or rate of change,
must account for this change to both functions.

With these rules, you should be able to calculate the derivative of the sigmoid
function in (2). Try it yourself, then check the step-by-step solution below. Hint:

1

1 + e−x
= (1 + e−x)−1

2.3 Solution

Since the sigmoid function has an e−x nested inside it, we must apply the chain
rule from (6). Thinking of the inner function g(x) as 1 + e−x and the outer
function f(x) as x−1, we get:

d

dx
((1 + e−x)−1) = f ′(g(x))g′(x) =

d

dx
(g(x))−1 d

dx
(1 + e−x)

The left half is differentiable with the power rule from (4). The right half is
a sum of two functions, so we’ll apply (3). (The derivative of a constant is 0.)

= −1(1 + e−x)−2(
d

dx
1 +

d

dx
(e−x)) = −1(1 + e−x)−2 d

dx
(e−x)

The derivative on the right is also a case of the chain rule, where the “inner”
function is−x and the “outer” function is ex. (The derivative of a linear function
is the coefficient.)

= −1(1 + e−x)−2(
d

dx
(eg(x))g′(x)) = −1(1 + e−x)−2(e−x)(−1)
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Simplifying, we get:

S′(x) =
e−x

(1 + e−x)2
(7)

If this was your solution, congrats! You’ve just successfully applied several
new calculus rules. See Figure 3 for what that looks like visually.

Figure 3: The sigmoid function graphed with its derivative.

But we can actually further simplify (7). With the equation for the sigmoid
function S(x) from (2) in mind, let’s rewrite our answer to be:

(
1

1 + e−x
)

e−x

1 + e−x
= S(x)

e−x

1 + e−x

We can further split the right half like so:

= S(x)
(1 + e−x)− 1

1 + e−x
= S(x)(

1 + e−x

1 + e−x
− 1

1 + e−x
)

Which gives us the most useful expression for the derivative of the sigmoid
function:

S′(x) = S(x)(1− S(x)) (8)

This means that to take the derivative of the sigmoid function with our
custom neural networks, we only need to program in the sigmoid function itself.
That’s neat.

3 Gradients

The other place you’ll require an understanding of calculus is in gradient descent,
or how neural networks learn. In essence, neural nets are chains of formulas that
input data passes through to get to an output prediction. The total error, or
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cost, of the neural network’s prediction can be used to determine how we should
change the formulas leading up to it.

However, since these formulas all affect one another, dozens of variables
end up affecting the overall cost function. So the change in variables can’t
be expressed with a derivative, which applies to the slope of a 2D graph, but
requires the ”slope” of an n-dimensional graph. This is best expressed as a
vector, which we call the gradient, and write as ∇f .

Luckily, when you actually implement a neural network, you won’t have to
find the gradient manually, thanks to matrix algebra tricks. Instead, we’ll gain
a conceptual understanding of the gradient today with a simple 3D example.

The equation z = x2 + y2 looks like a parabola rotated around the z-axis.
(See Figure 4.) Visualize a ball on this surface. It would naturally roll down
to the origin, right? With the gradient, we can actually find the direction of
travel of such a ball at any point. This is similar to how with the derivative
of a parabola, we can find the direction of travel of a ball placed inside the
parabola’s curve at any point.

Figure 4: z = x2 + y2

And finding gradients doesn’t require a new derivative rule. Instead, to
find a gradient, take a derivative with respect to every variable in the function,
meaning we apply standard rules to one variable and treat all other variables
as constants. For the function z = x2 + y2, we’ll take two derivatives, one with
respect to x, and another with respect to y. These derivatives are called partials
and can be notated as:

∂z

∂x
,
∂z

∂y

Our final gradient will simply be the vector of these two partials:

∇z =
〈∂z
∂x

,
∂z

∂y

〉
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In this example, the partials are simple, since the derivative of the other
variable’s terms is zero for both partials (since we treat the other variable as a
constant). So the final gradient is:

∇z =
〈∂z
∂x

,
∂z

∂y

〉
=

〈
2x, 2y

〉
At the point (1,1), we’d get the vector

〈
2, 2

〉
. But wait, that vector points

in the opposite direction from where the ball would roll to...which is exactly the
opposite of what we want. You can infer that the gradient actually points in the
direction of steepest ascent. To find the direction of steepest descent, simply
take the negative of the gradient:

−∇z = −
〈
2x, 2y

〉
=

〈
−2x,−2y

〉
Which at the point (1,1), would give us a direction of

〈
−2,−2

〉
, matching

the direction of travel of our imaginary ball as it goes to the origin. This formula
works at any point, too; try (1,0) or (0,0).

4 Closing

Hopefully, you now have a solid conceptual grasp of both derivatives and gra-
dients, their higher-dimensional counterparts. If not, see the References section
for more help. Next week’s lecture will be considerably less math-heavy, focus-
ing more on explaining how neural networks are constructed and less on the
math behind them.

5 References

5.1 Derivative Help

• Khan Academy: https://www.khanacademy.org/math/calculus-1/cs1-derivatives-
definition-and-basic-rules

• 3b1b: https://www.youtube.com/playlist?list=PLZHQObOWTQDMsr9K-
rj53DwVRMYO3t5Yr

5.2 Images

• Sigmoid: https://towardsdatascience.com/derivative-of-the-sigmoid-function-
536880cf918e

• 2D graphs: https://www.desmos.com/calculator

• 3D graph: https://www.geogebra.org/3d?lang=en
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