
Convolutional Neural Networks: The Convolution

Kevin Fu∗

January 2019

1 Introduction

Convolutional neural networks (CNN) are variants on standard neural networks
that are designed to take advantage of spatial relationships. They’re currently
the industry standard for image recognition tasks—the top performers on the
MNIST dataset, with error rates from 0.31 to 0.27, are all CNNs.

2 Convolutional Layers

In theory, a standard one-layer neural network can learn any function, pro-
vided the single layer is large enough. However, in practice, we often add layers
to shorten training times and decrease the chance of overfitting. Likewise, to
improve performance on problems like image recognition, where spatial rela-
tionships are important, we modify the structure of a vanilla neural network.
But rather than simply adding layers, we change the structure of the layers
themselves.

Figure 1: A fully-connected layer.

Traditional neural networks are fully connected, meaning every neuron in
one layer is connected to every other neuron in the subsequent layer, as shown
in Figure 1. This means that when we take images and flatten them into a

∗Expansion of Sylesh Suresh and Mihir Patel’s lectures of the same name

1



vector, as you did with the MNIST images for the Neural Network competition,
we’re disregarding the fact that pixels close together are more correlated than
pixels on opposite sides of the image. The neural network has to learn these
relationships for itself.

This works for smaller images, like the 28x28 images in the MNIST dataset,
but larger images contain hundreds of thousands of pixels, which increases the
time it takes our network to learn spatial relationships. It would be easier if we
structured our neural network to correlate nearby pixels, without forcing it to
backpropagate for that understanding.

2.1 Convolutions

To take advantage of spatial relationships, CNNs employ convolutional layers,
so named because they rely on convolutions. In computer vision, a convolution
is an operation of a kernel on an image:

Figure 2: A 3x3 convolution.

These diagrams show grids, but internally, all the images, kernels, and out-
puts are matrices of floats. Grayscale images are matrices of light intensity
levels, so each pixel maps with one number. Color images use three matrices,
each with red, green, or blue intensity levels; hence, three numbers per pixel.

In Figure 2, the bottom grid is the input image, the top grid is the output,
and the gray shadow is the kernel that’s slid over the input to get each square
of the output. The 3x3 kernel is slid left-to-right, top-to-bottom, over the whole
image. At each step, the pixel intensities of the kernel-covered region of the
image are multiplied with the corresponding values of the kernel, then added
together to produce a single number for the output matrix.

2



You’ll notice that the output grid is one pixel smaller than the input grid
above, due to the nature of sliding the kernel around. To make the dimensions
match, we can add a border of zeroes, known as zero-padding :

Figure 3: A 3x3 convolution with zero-padding.

Consider a convolution on a zero-padded image with this kernel (sometimes
called a filter or a mask):

1

9

1 1 1
1 1 1
1 1 1


This convolution’s output is a blurry version of the input image:

Figure 4: Image blurred with box blur kernel.

This makes sense if you look at the kernel (known as a box blur). A kernel
of ones means the output pixels are simply the sum of the input pixel and its
eight neighbors, and then we divide by nine to normalize. Keep the intuition
that kernels and convolutions relate a pixel to its neighbors in mind.

A more complex example: convolving the kernel in Figure 5, known as a
Sobel kernel, is a simple way to detect vertical edges in an image:

3



Figure 5: Vertical edges found with a Sobel kernel.

For areas of the image that are the same color, this kernel will output zero, as
the left column and right column cancel each other out. But areas with vertical
edges have one color on the left side of the edge and a different color on the
right side. Hence, the Sobel kernel will output high values over those regions.

2.2 Feature Maps

For a CNN, we treat the values of our kernel as weights, and have our forward
propagation apply convolutions on input images rather than the traditional
fully-connected layers. That way, our neural network is forced to focus on a
local region of pixels, rather than guess at which pixels are correlated across
the entire image. (You may see this described as each neuron having a “local
receptive field.”)

Like in a normal kernel, the weights of our CNN’s kernel are the same across
the whole image. This makes sense given what we know about convolutions,
but it’s hard to wrap your head around if you consider it from a neural network
perspective: how could a layer with only nine weights possibly be useful on an
image, which has thousands of input values?

In reality, CNNs use multiple kernels in each convolutional layer. Each kernel
produces what’s called a feature map, so named because the CNN will hopefully
use each kernel to find different features in an image. For example, this kernel: 1 −1 −1

−1 1 −1
−1 −1 1


is good at finding parts of an image that look like it. See Figure 6.
The output feature map, produced by convolving the kernel over the input

image, has higher values where there are diagonals in the input image. We can
add as many kernels as we want to extract multiple feature maps from the same
image, each adding a level of understanding to our network.

4



Figure 6: Finding diagonals in an image.

2.3 Multiple Channels

Notice that feature maps, or any of the outputs to convolutions above, look
awfully similar to the input images we fed them, especially if we use zero-padding
to keep the dimensions consistent. Logically, we can treat feature maps as the
inputs to further layers in our CNN, because convolving over a feature map is
the same as convolving over an input image. Both are stored as matrices of
floats.

Earlier, we noted that CNNs use multiple convolutions on the same input
image to produce multiple feature maps, and thus extract multiple features of
an image. This is how we handle the first layer of a grayscale image. But this
poses a question: sure, we can treat an output feature map as the input to
another convolution, but how do we convolve over multiple feature maps? If
you saw Figure 4 and wondered how we applied a single kernel to a color image,
which we know is actually three different matrices, this question may have come
up for you already.

Figure 7: A multi-channel convolution.

Think of multiple correlated feature maps (or multiple color matrices of an
RGB image) as a stack. The depth of this stack is however many kernels we ran
on the previous layer, because each convolution produces a 2D output. Each

5



layer of our stack is called a channel : a grayscale image has one channel and
an RGB image has three. To run a convolution over a multi-channel input, we
convolve a unique 2D kernel across every 2D channel of the input, then sum
each kernel’s feature map for its respective channel. This results in one final 2D
feature map for a multi-channel input. See Figure 7. 1

Just like the input stack, this group of kernels-per-input-channel can be
thought of as a stack of kernels. Together, this stack makes up a single filter,
as shown in Figure 8. (Note: many sources on CNNs will use kernels and filters
interchangeably, because they are the same thing—in the 2D case. However,
the distinction is clear for multiple channels: kernels are 2D-only, whereas filters
can have multiple channels.)

Figure 8: A filter, which is an n-channel stack of kernels.

So adding subsequent layers to our CNN is the same as the transition from
a one-channel grayscale image to a multi-channel stack of feature maps, if we
think of a single kernel as a one-channel filter. Applying one filter to the input,
if the channels between the filter and the input match, will yield a 2D feature
map. Applying multiple filters will allow us to detect multiple features in the
input, and give us multiple 2D feature maps. We can stack these feature maps
together and feed it to yet another convolutional layer.

In sum, a convolutional layer is not a single kernel passed over a single input
channel, but as many kernels as desired passed over as many input channels as
given. For a layer with n kernels, the resulting stack of feature maps will have
n-channels. This allows us to handle three-channel color images as direct inputs
to our CNNs.

1For an animated visualization of this, go to https://towardsdatascience.com/intuitively-
understanding-convolutions-for-deep-learning-1f6f42faee1.

6



2.4 Comparing CNNs to Vanilla Neural Nets

The initial reason we chose convolutional layers over fully-connected ones was
to take advantage of spatial structuring in an image—the idea that pixels close
together are more correlated than pixels far apart. However, by using convolu-
tions, we’ve also solved another problem: dealing with larger input images. A
vanilla neural network was fine for the MNIST dataset, with its 28x28x1 inputs,
but moving to a modest 224x224x3 means we need a input layer of 150,000
neurons. Attempting to add a single hidden layer to halve that input would
require over 10 billion parameters (weights and biases).

Having weighted kernels, which can be thought of as locally-connected neu-
rons, dramatically reduces the number of weights needed from layer to layer.
For example, the record-setting 152-layer deep ResNet architecture, which runs
on 224x224x3 input images, has less than 20 million parameters total. Of course,
they employed a few more tricks to reduce parameters and thus reduce training
times.

Next week, in the second part of this lecture, we’ll learn how stacks of feature
maps are implemented as convolutional layers, how those stacks are turned into
predictions, and improvements on the basic CNN framework.

3 References

3.1 Information Sources

• https://en.wikipedia.org/wiki/MNIST database

• https://www.youtube.com/watch?v=FmpDIaiMIeA

• http://neuralnetworksanddeeplearning.com/chap1.html

• https://towardsdatascience.com/intuitively-understanding-convolutions-for-
deep-learning-1f6f42faee1

• https://arxiv.org/pdf/1707.09725.pdf#page=17

• https://ai.stackexchange.com/questions/5769/in-a-cnn-does-each-new-filter-
have-different-weights-for-each-input-channel-or

• 2018 and 2019 TJML CNN Lectures

3.2 Image Sources

• https://github.com/vdumoulin/conv arithmetic

• https://www.saama.com/blog/different-kinds-convolutional-filters/

• https://en.wikipedia.org/wiki/Kernel (image processing)#Convolution

• https://towardsdatascience.com/intuitively-understanding-convolutions-for-
deep-learning-1f6f42faee1

7


