
Convolutional Neural Networks: The Network

Kevin Fu∗

January 2019

1 Introduction

Last week, we went in-depth on how a convolution works. In this lecture, we’ll
apply our knowledge of convolutions to see how convolutional layers are actually
implemented in a CNN.

2 Convolutional vs. Fully Connected Layers

Recall that the reason we chose convolutional layers over fully-connected ones
initially was to take advantage of spatial structuring in an image—the idea that
pixels close together are more correlated than pixels far apart. By sliding a
kernel across an image, we consider only small regions of an image at a time.

Figure 1: A 3x3 convolution with zero-padding.

By using convolutions, we also address the problem of translation. In a
standard fully-connected layer, the network may learn how to detect a specific
feature when it appears in the center of an image, but if that feature is in a
different position in the image, it won’t be detected. A kernel, when applied to
an input image, will find every place that matches the feature it’s looking for.

∗Expansion of Sylesh Suresh and Mihir Patel’s lectures of the same name

1



This property of CNNs is called translation invariance; later, we’ll introduce a
new type of layer that makes CNNs rotation and scale invariant as well.

Figure 2: Translation invariance.

Convolutional layers can also handle larger input images. A vanilla neural
network was fine for the MNIST dataset, with its 28x28x1 inputs, but moving
to a modestly-sized color input image, say, 224x224x3, means we need a input
layer of 150,000 neurons. Attempting to add a single hidden layer of half that
size would require over 10 billion parameters (weights and biases).

Having the kernels in a CNN be what stores weights dramatically reduces the
number of weights needed from layer to layer. Moreover, the fact that we store
the weights in kernels means we pass the same weights over the whole image.
With convolutional layers, the 152-layer deep ResNet architecture, which runs
on 224x224x3 input images, has fewer than 20 million parameters total.

(To those unfamiliar with computer vision, storing weights in kernels seems
like paring the connections between neurons, then sharing weights between
them, which is why you’ll see this described as “locally-connected neurons shar-
ing weights.” The convolution operation explains why and how we locally con-
nect neurons and share weights, however.)

3 The Full CNN Structure

Now that we understand how convolutional layers are superior to fully-connected
ones for image recognition, the problem becomes how we actually implement
one. Recall from last week that a feature map is simply the output of a kernel
convolved over an input image. It’s so named because the output matrix will
have high values wherever the input matches the feature the kernel is searching
for. (See Figure 3.)

A convolutional layer is simply multiple kernels run over the same input. The
number of feature maps produced, and thus the number of features detected, is
determined by the number of kernels convolved over the input. Together, the
output feature maps can be treated as an output stack of feature maps.

For inputs with multiple channels, like color images, we can stack kernels to
make a filter. A single filter still produces a single output feature map. If we

2



Figure 3: A feature map for the negative-slope diagonal.

append a second convolutional layer to the first, its input will be the output
stack of feature maps from the first layer: the output stack of the first layer is
treated as a multi-channel input for the second layer.

Figure 4: A convolution on a three-channel input.

By feeding successive convolutional layers the inputs of the prior layer, we
structure our CNN to be able to abstractly combine features. For example, for
a CNN designed to classify if an image contains an X or not, layer one might
have three kernels that identify a diagonal with a positive slope, a diagonal
with a negative slope, and the intersection of those two. This would produce a
three-deep feature map stack, which the next layer would then look at to see if
the feature maps from the prior layer activate in the right areas for an image
with an X.

3.1 Activation Function

Of course, to get these convolutional layers to learn what features to detect, by
backpropagating and updating the weights in each kernel, we need to introduce
an activation function. We learned in the basic neural network lectures that a
standard activation function is the sigmoid function, or:

3



σ(x) =
1

1 + e−x

Another standard activation function is the hyperbolic tangent function:

tanhx =
sinhx

coshx
=
ex − e−x

ex + e−x

Tanh has roughly the same shape as the sigmoid function, but has a larger
range of -1 to 1 when compared to sigmoid’s range of 0 to 1:

Figure 5: Sigmoid vs tanh function.

Both of these functions suffer from the vanishing gradient problem, where
the gradients become negligibly small when the inputs are very large or very
small. When developing CNNs, researchers instead chose to go with the Recti-
fied Linear Unit, or ReLU, as their activation function.

Figure 6: The ReLU function.

4



Mathematically, this is simply:

f(x) = max(0, x)

The slope of the ReLU function for any positive inputs, or any values a
neuron activates on, is one. This prevents the gradient from vanishing, speeding
up training. Also, the function itself and its derivative are incredibly cheap to
compute, which also speeds up training.

The ReLU activation is applied directly to the output feature map(s) of a
convolutional layer. In practice, this is as simple as replacing all the negatives
with zeroes. For example, let’s say this is the output feature map for a very
strange feature: 

1 −1 −1 −4
2 −2 7 3
−3 −7 −1 −4
3 5 4 −6


Applying ReLU gives us this matrix:

1 0 0 0
2 0 7 3
0 0 0 0
3 5 4 0


Conceptually, this can be thought of as the network only taking positive

cases into account when training, since the slope is zero for negative x values of
ReLU. This mirrors how biological neurons fire only when a certain activation
threshold is reached, and do nothing otherwise.

3.2 Pooling Layers

However, even with speedy ReLU activations and the inherent advantages of
convolutional layers over fully-connected ones, CNNs are still computationally
intensive. To further reduce computational cost, we can add a new type of layer
to our CNN: pooling layers. As the name implies, these layers pool together
values that are spatially close together.

The most common type of pooling is max pooling, where the highest value
within a certain region is selected and passed down, reducing the size of the
matrix given. In this example, we consider 2x2 regions:

5



This has a few key benefits. The motivation behind pooling layers was to
reduce the size of the input matrix for the next convolutional layer, which saves
training time. Taking only the max value of a feature map has a de-noising
effect as well, because weak activations are suppressed.

Another benefit is our CNN is more translation invariant, and now rotation
and scale invariant as well. To demonstrate, imagine our CNN, by piecing
together lower-level features from earlier layers, has a layer that identifies the
number five in three different rotated positions:

Of course, these are all fives, and we want the next layer of our CNN to
activate if any of these three versions activate. By introducing a max pooling
layer, our CNN activates if any of the three rotations matches, even if the other
two don’t:

The arguments for translation and scale invariance are similar. Generally,
we put max pooling layers after every ReLU activation, to gain this invariance
and computational speedup for every convolutional layer.

6



3.3 Fully-Connected Tail

We understand now that convolutional layers produce stacks of feature maps,
which, after some additional processing with ReLU and max pooling layers, are
fed as inputs to successive convolutional layers. Graphically, that looks like:

How do we turn a stack of feature maps into a prediction, though? CNNs
are designed to classify images well, but the current output—a stack of feature
maps—doesn’t contain any classification of what’s actually in the image.

The solution is to turn back to the fully-connected layer. After successive
convolution and pooling layers, the CNN should have an high-level sense of
which features exist in the image, regardless of position, scale, or rotation. It
should also have reduced the dimensions of the input image to a manageable
size. This means our main problems with using fully-connected layers for image
recognition have been solved.

By flattening the final 2D output feature maps from a series of convolutional
layers, turning them into a 1D array, image classification turns into a standard
classification problem. With many arbitrary numerical inputs and a known
desired output, we can plug in a fully-connected layer at the end to classify
images. Our full CNN structure looks like this:

Figure 7: The full CNN structure.

The flattening process is exactly what it sounds like. For example, this
matrix:

7



1 2 3
4 5 6
7 8 9


flattens to: [

1 2 3 4 5 6 7 8 9
]

(For a 3D stack of matrices, the process is identical, with the layers further
back simply tacked onto the end of the flat 1D matrix.)

In theory, you could add multiple fully-connected layers at the end of any
CNN. In practice, however, since we want the convolutional layers to do most
of the image recognition, there is usually only one fully-connected layer added
for classification.

3.4 Softmax

Finally, you’ll see the last layer of the diagram in Figure 7 is labelled “soft-
max.” Like ReLU, this is another new activation function. Luckily, it’s easy
to understand. Softmax simply converts the numerical outputs of a CNN into
probabilities, with higher numbers translating into higher probabilities.

The use of softmax layers at the end of CNNs is to make them easier to train.
This way, to turn a categorical label like “car” or “cat” into the desired training
output of the CNN, we just have to create an array with as many entries as
we have classes, and set the “probability” of the right class to 1. This is called
one-hot encoding.

4 CNN Hyperparameters

Like a vanilla neural network, some basic hyperparameters to tune in a CNN
are layer count, learning rate, and batch size. There are a few CNN-specific
hyperparameters though, mostly for the convolutional layers.

8



4.1 Kernel Size

Changing the kernel size impacts the computational cost in forward and back-
ward propagation and the scale of the features learned. Smaller kernels learn
smaller patterns whereas larger kernels are more difficult to train but can ex-
tract more spacial information. Typically, odd numbers are used for kernel sizes
so that at each step the center is a specific pixel and not the center of a pixel.
Common sizes are 3x3, 5x5, and 1x1 (which adjusts the number of channels).

4.2 Depth

Again, each kernel convolved will produce an output feature map, so the depth
of the output stack will be equivalent to the number of kernels in a layer. In
papers, the notation for a convolutional layer is kernel size, then depth. [3x3,
64] is a layer with 64 3x3 kernels.

4.3 Stride

In the examples above and in last week’s lecture, we slid a kernel over every
possible pixel of the input. This means our kernel had a stride length of 1, as at
every step we move the kernel by 1 in the right direction. However, it can be the
case that two kernel locations may have high enough overlap that calculating
both is repetitive. This is especially true for larger kernels. To account for this,
we increase the stride length.

0 0 0 0
0 1 2 0
0 4 5 0
0 0 0 0

 ∗
[
2 2
2 2

]
=

 2 6 4
10 24 20
8 18 10


In the above equation, we apply a 2 x 2 kernel to a 4 x 4 image to obtain a 3 x
3 result. However, if we increase the stride length to 2:

0 0 0 0
0 1 2 0
0 4 5 0
0 0 0 0

 ∗
[
2 2
2 2

]
=

[
2 4
8 10

]

This reduces the dimensions of the output matrix. The max pooling layer
described above can be thought of as having a stride of 2.

4.4 Zero Padding

A kernel cannot be centered around border pixels, which may lead to it missing
certain features: [

1 2
4 5

]
∗
[
2 2
2 2

]
=
[
24
]

9



To fix this, we can add zeros to the border, a technique called zero-padding:
0 0 0 0
0 1 2 0
0 4 5 0
0 0 0 0

 ∗
[
2 2
2 2

]
=

 2 6 4
10 24 20
8 18 10


This allows us to apply the kernel to the edges. The reason we commonly use
kernels with odd dimensions is because the center of an even-dimensioned matrix
is ambiguous, as in the above case, where a 2 x 2 kernel is used.

5 References

5.1 Sources

See list of references in the first CNN lecture (“Convolutional Neural Networks:
The Convolution”).

5.2 Images

• https://medium.com/@danqing/a-practical-guide-to-relu-b83ca804f1f7

• https://deepai.org/machine-learning-glossary-and-terms/sigmoid-function

• https://stats.stackexchange.com/questions/207195/translational-variance-
in-convolutional-neural-networks

• https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-
network-cnn-deep-learning-99760835f148

• https://principlesofdeeplearning.com/index.php/2018/08/27/is-pooling-dead-
in-convolutional-networks/

• http://egrcc.github.io/docs/dl/deeplearningbook-convnets.pdf

• https://medium.com/data-science-bootcamp/understand-the-softmax-function-
in-minutes-f3a59641e86d

• Some images from the first CNN lecture (“Convolutional Neural Networks:
The Convolution”).

10


