
Generative Adversarial Networks (GANs)

Akshan Sameullah

April 2020

1 Introduction

Imagine two people are locked in a world-class art museum alone together. Out
of boredom, Person A decides to learn to paint with some supplies from the
gift shop while Person B (whose artistic talent happens to be very limited) just
walks around admiring the artwork. After some time, Person A becomes very
good at painting, while Person B becomes very familiar with the subtlest details
in the paintings created by many world-class artists. After meeting up, Person
B decides to use their gained knowledge to help Person A paint a world-class
painting. Person A first paints a picture based on what they guess could be
world-class artwork. They then hand it to Person B, who takes another look
at the paintings in the museum and then provides feedback and suggestions to
Person A to make their painting look world-class (such as using brighter colors,
less opacity, etc:-). This is similar to how Generative Adversarial Networks
(GAN) work.

In the context of Generative Adversarial Networks, Person A in the analogy
represents the Generator, while Person B is analogous to what is known as
the Discriminator. The paintings that Person B studied represent training
data, and the materials Person A used to gain art skills are analogous to latent
factors, alternately referenced as the z vector.

2 Generative Models

In a broader scope, Generative Adversarial Networks are part of a class known
as Generative models used for unsupervised learning. Generative models are
models with the task of creating samples of a similar distribution as the training
data.

Generative Models have a vast number of applications including generating
artwork, simulation and planning for Reinforcement Learning, increasing image
resolution, colorization, data augmentation, and countless more.

Generative Models are divided into two main groups, Explicit Density Models
and Implicit Density Models. In short, Explicit Density Models specify the
parameters of the distribution of a random variable for a function, while Implicit

1

Figure 1: Minimax objective function

Density Models follow a stochastic approach. To simplify, Explicit Density
models pick a random variable and then compare that random variable’s value
in the data provided (e.g. plotting the degree that some images are green) and
then tries to learn a function to estimate this nature. Implicit models, aim to
generate samples to mimic the given ”real” data (training data).

3 Concept

Generative Adversarial Networks are currently the state-of-the-art sample gen-
erator. Generative Adversarial Networks are Implicit Density Models and do not
use Explicit Density Functions, unlike many other Generative Models. Instead,
they use an adversarial or game-theoretic approach.

GANs are made up of two networks, the Generator network and the
Discriminator Network. The Generator Network produces fake images with
the goal of having them look as realistic as the training data. The Discriminator
Network is then fed these fake images from the Generator Network and predicts
if the image is real or fake with respect to the training data.

GANs are trained in a game between the Discriminator and the Generator,
in which the Generator tries to produce quality data that seems so realistic, the
Discriminator cannot determine whether the data was created by the generator
or not.

The goal of the Discriminator in this game, is to pick up on any mistakes
or artifacts that the Generator made that differentiate what is real, and what
is generated. This joint game is called the minimax game. The objective
function for the minimax game is as follows:

2

Figure 2: Joint process between Discriminator and Generator

In short, we find the minimum parameters for the Generator for the maxi-
mum parameters for the Discriminator of the confidence of a real image being
real (the first term in brackets) and a fake image being fake (the second term
in brackets). In the Minimax game, both networks ”take turns”, as in the Dis-
criminator doesn’t update parameters while the Generator is training, neither
does the Generator update parameters from the objective function while the
Discriminator is training.

4 The Discriminator

In a GAN, the Discriminator is fed Real Data (Positive Training Examples
received from Training Data) and Generated Fake Data (Negative Training
Examples produced by Generator). The Discriminator classifies the Generator
output it receives and then calculate both the loss of the Generator and the loss
of the Discriminator. It then penalizes itself only using its own calculated
loss. It then concludes its turn with back-propagation and updating its weights.

The Discriminator performs Gradient Ascent, or in other words, tries
to increase the objective function so that D(x) (the Discriminator’s prediction
probability of a sample from the training data is real) is high and D(G(z)) (the
Discriminator’s prediction probability of a sample of generated data is real) is
low.

5 The Generator

The Generator takes in random sampled noise from the target distribu-
tion as the input (the z vector), and then outputs a sample using its weights
to feed into the Discriminator. After receiving a classification of the output
from the Discriminator (does it look real or fake), we calculate loss and back-
propagate through both the Discriminator and the Generator but only update
the Generator weights. That concludes the Generator’s turn in the game.

3

The Generator as per the minimax function above, performs Gradient
Descent or in other words, it tries to decrease the objective function so that
1-D(G(z)) (the Discriminator’s prediction probability of a sample of generated
data is real) is low. With this objective, the gradient would generally be lowered
in an exponential fashion. However, in practice, it is found that it helps to
instead perform Gradient Ascent on D(G(z)) so instead of trying to simply
avoid the Discriminator being correct, it tries to make the Discriminator predict
a false positive. This is essentially the same idea, but now the discriminator will
learn more from the first few samples which are generally bad samples because
of the initialization of the Generator being random. An update to the original
GAN paper was added to incorporate this principle.

6 Putting it Together

Using the steps we saw above, we now have a general idea of making a GAN from
scratch. Below is a pseudo-code (Ian Goodfellow et al., ”Generative Adversarial
Nets”, NIPS 2014) to reinforce understanding:

f o r number o f i t e r a t i o n s :
f o r k s t ep s : #i t i s c u r r e n t l y unc l ea r whether k must

be 1
sample minibatch o f m no i s e samples

(z vec to r) from p r i o r no i s e
sample minibatch o f m examples (x) from data

gene ra t ing d i s t r i b u t i o n
Update Di sc r iminator by ascending i t s s t o c h a s t i c

Gradient

sample minibatch o f m no i s e samples (z)
from p r i o r no i s e

Update Generator by ascending i t s s t o c h a s t i c
Gradient

7 The z vector

It is important to keep in mind that GANs are a form of unsupervised learning,
and so they take in unlabeled data. We talked about how the Generator takes
in random noise (The z vector) from the training data. To illustrate why this
works, consider the following scenario.

A family keeps a pet dog in their house. Ever since the dog was born, it
has been watching movies and television shows. It notices that when the dogs
on the screen in movies do certain things, it makes the owner laugh. The dog
then tries to combine some random actions from the dogs in movies and notices
how much attention it receives from the owner. It then tries to combine some
other actions from the figures in the movie to see if that increases attention.

4

Figure 3: We can connect between random points in the latent space to form
images with varying degrees of underlying variables

After many tries, the dog would eventually be able to generate actions that are
just as attention-seeking as the actions of dogs in movies. In the analogy, the
dog was not given any labeled data, but was still able to generate data that
was indistinguishable from the television. This ties to the larger definition of
Artificial Intelligence, which is to mimic the human brain.

8 CycleGANs, Deep Convolution GANs, and
other recent advances

In this lecture, we talked about the plain vanilla GAN, which can produce
generate new data given unlabeled data:

However, plain vanilla GANs generally aren’t realistic enough to fool a hu-
man or are so close to the training example they aren’t exactly new.

5

Figure 4: These Vector representations shown can be used in a sort of ’arith-
metic’ to produce new images

Figure 5: These images were generated by a GAN, except for the right column,
which is the nearest neighbor from the training set

Figure 6: These images were generated by a basic GAN using the CIFAR-10
Dataset

6

Figure 7: For a course introduction, MIT students used a CycleGAN to trans-
form their introduction’s image and voice to match that of Obama’s. Notice the
CycleGAN changes the background as well to match the training data

Figure 8: These faces were generated by a Deep Convolution GAN and appear
photorealistic

As a result, many developments have been done by adding on to this idea.
This includes the CycleGAN, which can perform transformations between
domains. This became popular in the media, through applications such as
Snapchat filters and deepfakes. Essentially, instead of generating new samples
given training data, it takes an input and applies the distribution from a target
to that input.

Another improvement (most commonly used) is the Deep Convolution
GAN(Radford et al. ”Unsupervised Representation Learning with Deep Con-
volutional Generative Adversarial Networks”, 2016). This idea uses a Convo-
lutional Architecture, for both the Discriminator and the Generator (The gen-
erator uses fractionally strided convolutions, which makes sense based on what
we learned about Generators) instead of a simple neural network. The results
of this, are spectacularly realistic.

These GANs also follow a few guidelines (Radford et al. ”Unsupervised
Representation Learning with Deep Convolutional Generative Adversarial Net-
works”, 2016) which include:

• Replace Pooling Layers with strided convolutions (fractional for the Gen-
erator)

• Use batch normalization in Discriminator and Generator

• Remove Fully Connected Hidden Layers for deeper architectures

7

Figure 9: Progressive growing of Convolutional GANs (NVIDIA)

• Use ReLU for all layers in generator, except for the output, which uses
Tanh

• Use LeakyReLU for all Discriminator Layers

Work on GANs accelerated during the past few years with many advance-
ments such as the two mentioned. Advancements have been made on training,
overall generation, speed, etc:-. Many applications have risen that use GANs
all around. Examples used in the real world are incorporated in most indus-
tries. Examples include Using GANs to model clothing, or generate high-quality
images from text or crude drawings for the need of stock images.

9 Credits and Resources

For more types of GANs and research papers visit https://github.com/hindupuravinash/the-
gan-zoo

Stanford University School of Engineering Lecture 13 CS231n Generative
Models

MIT 6.S191 Deep Generative Modeling
Carnegie Mellon University Deep Learning Lectures 23-24
Ian Goodfellow’s Lectures, Google Brain ICCV17
IBM IT Infrastructure Generative Adversarial Networks
Apple Machine Learning Journal: GAN

8

Figure 10: Some of the many applications of GANs. Text Synthesis (Akata et
al. 2017)

Tensorflow Core
National Research University Higher School of Economics

9

