
Reinforcement Learning with Markov Models

Caroline Sun and Krish Ganotra

April 2020

1 Introduction

In typical reinforcement learning problems, the agent is the learner and decision
maker. The environment provides rewards and a new state based on the actions
of the agent. So, in reinforcement learning, we do not teach an agent how it
should do something but, instead, present it with rewards positive or negative
based on its actions. The root question we are trying to answer in this lecture is
how to formulate any problem in reinforcement learning mathematically. This
is where the Markov Decision Process (MDP) comes in. In order to do this, we
must develop our understanding of a couple of concepts, discussed next.

2 Background

2.1 Agent-Environment Relationship

Anything the agent cannot arbitrarily change is part of the environment. How-
ever, this does not mean the agent is altogether unaware of the environment.
For example, reward calculation is part of the environment, and the agent knows
a bit about reward calculations based on its actions. Further, even if the agent
were to be fully aware of its environment, that does not guarantee it can play
well. For example, we might know how to play a Rubik’s cube, but still not
be able to solve it. From this, we can determine that the agent-environment
relationship represents the limit of the agent control and not its knowledge.

2.2 The Markov Property

”Future is independent of the past given the present.” Mathematically, we can
express this as:

1



This intuitively means that our current state already captures the informa-
tion of the past states.

For reinforcement learning, the Markov property can be represented by the
state transition probability matrix. In the matrix, pi,j is the probability that the
agent will choose state i given the current state is j. Notice the agent does not
take any previous states into account. Each column should add to 1:

Figure 1: State Transition Probability Matrix

2.3 Rewards and Returns

Rewards are the numerical values that the agent receives on performing some
action at some state(s) in the environment. The numerical value can be positive
or negative based on the actions of the agent.

In Reinforcement learning, we care about maximizing the cumulative reward
(all the rewards agent receives from the environment) instead of, the reward
agent receives from the current state (also called immediate reward). This total
sum of reward the agent receives from the environment is called returns.

2.4 Episodic vs Continuous Tasks

Episodic Tasks are the tasks that have a terminal state. We can say they have
finite states. For example, in racing games, we start the game (start the race)
and play it until the game is over (race ends!). This is called an episode. Once
we restart the game it will start from an initial state and hence, every episode
is independent.

Continuous Tasks are the tasks that have no terminal state. These types of
tasks will never end. For example, learning!

It’s easy to calculate the returns on episodic tasks as they are finite. However,
if we sum rewards from continuous tasks, they will go on to infinity! Thus, we
must redefine returns for continuous tasks.

This is where a discount factor comes into play. A discount factor is a value
between 0 and 1, determining the importance given to immediate rewards vs
future rewards. It has a value between 0 and 1. A value of 0 means that more
importance is given to the immediate reward and a value of 1 means that more
importance is given to future rewards. In practice, a discount factor of 0 will
never learn as it only considers immediate reward and a discount factor of 1 will
go on for future rewards which may lead to infinity.

2



What value of a discount rate should we use? It depends on the game. For
example, in chess, we would want to use a larger discount rate, as the ultimate
goal of capturing the king is far more important than capturing a pawn.

2.5 The Markov Reward Process

In summary: each state has a reward, choose the best one! We still have to
choose a function that defines the reward at each state.

2.6 Bellman Equation for Value Function

Bellman Equation helps us to find optimal policies and value function.We know
that our policy changes with experience so we will have different value func-
tion according to different policies. Optimal value function is one which gives
maximum value compared to all other value functions.

Bellman Equation states that value function can be decomposed into two
parts - immediate reward and discounted value of successor states.

3 Bellman Expectation Equation

A quick review of Bellman Equation we talked about in the previous section:

Figure 2: Bellman Equation for Value Function (State-Value Function)

From the above equation, we can see that the value of a state can be de-
composed into immediate reward (R[t+1]) plus the value of successor state (v[S
(t+1)]) with a discount factor. This still stands for Bellman Expectation Equa-
tion. But now what we are doing is we are finding the value of a particular
state subjected to some policy(π). This is the difference between the Bellman
Equation and the Bellman Expectation Equation.

Figure 3: Bellman Expectation Equation for Value Function (State-Value Func-
tion)

3



4 Optimal Value Function and Optimal State-
Action Value Function (Q - function)

In an MDP environment, there are many different value functions according
to different policies. The optimal Value function is one which yields maximum
value compared to all other value function. When we say we are solving an
MDP it actually means we are finding the Optimal Value Function.

Similarly, Optimal State-Action Value Function tells us the maximum re-
ward we are going to get if we are in state s and taking action a from there
on-wards.

5 Optimal Policy

How do we define an optimal policy? We say that one policy(π) is better than
other policy (π’) if the value function with the policy π for all states is greater
than the value function with the policy π’ for all states.

6 Bellman Optimality Equation for State-Value
Function

Bellman Optimality equation is the same as Bellman Expectation Equation but
the only difference is instead of taking the average of the actions our agent can
take we take the action with the max value. For large MDPs, we would use
dynamic programming algorithms like policy iteration and value iteration.

7 Applications

Many of the applications of reinforcement learning can utilize Markov Models,
namely, ones that are mainly concerned with the present state over past states.
Applications of reinforcement learning with Markov models are wide ranging
and include:

• Natural Language Processing - Speech Transcription, Translation

• Computer Vision - Recognition, Detection, Perception

• Finance - Managing Portfolios, Trading, risk management

• Games - Go, Poker, Chess

• Transportation - Adaptive Traffic Signals

4



8 References

• http://www.cs.cmu.edu/ 10601b/slides/MDP RL.pdf

• https://medium.com/@jonathan hui/machine-learning-hidden-markov-model-
hmm-31660d217a61

• https://hackernoon.com/from-what-is-a-markov-model-to-here-is-how-markov-
models-work-1ac5f4629b71

• https://towardsdatascience.com/introduction-to-reinforcement-learning-markov-
decision-process-44c533ebf8da

• https://towardsdatascience.com/reinforcement-learning-markov-decision-process-
part-2-96837c936ec3

• https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

5


