Reinforcement Learning

Aditya Vasantharao
April 2020

1 Introduction

Reinforcement Learning (RL) is a branch of machine learning which uses a
reward system to determine the action that the algorithm should take. These
algorithms are very popular in the game development industry, with many games
using these algorithms to play as ”bots” in single-player modes, but they are
also very useful in the fields of robotics, advertising, content recommendation
systems, and, in general, fields which have little-to-no training data.

2 RL Overview

RL algorithms contain two main components: the agent (the algorithm that
makes decisions to try to solve the main problem) and the environment. In
each iteration of this algorithm, the environment sends the agent a state (the
position of the agent in the environment), the agent performs an action based on
that state, and the environment sends the agent a reward based on the success

of that action.
:| Agent ||
state reward action
Sr Rz Ar
L Rt+1 (" |

;Sr+1 Environment |<——

Figure 1: RL Algorithm Illustration

2.1 Markov Decision Process

Figure 2: MDP Illustration

In Figure 2, R = indicates rewards, each node indicates a state, and the dec-
imal values placed along the edges that connect any two nodes indicate state
transition probabilities.

The process in which the agent and the environment interact with each other is
called the Markov Decision Process (MDP). The first part of the MDP, which
describes the environment, contains the following variables: S, A, P,, R,, where

e S is a set of all the states the agent can go through

A is a set of all the possible actions an agent can take

P,(s,s') = Pr(siz1 = ¢ | s« = s,a; = a), called the state transition
function, is a function which is used to determine which state s’ the agent
will go to after completing action a; in state s; at a given time ¢

R.(s,s'), called the reward function, is a function which determines the
reward that an agent gets after moving from state s to state s’

For context, P, is typically implemented either using a lookup table (determin-
istic) or using an algorithm which determines the probability that the agent
will enter a certain state given the parameters, choosing the state with the

highest associated probability (stochastic), and R, is typically implemented ei-
ther using a lookup table (deterministic) or using a continuous function, such
as a polynomial (non-deterministic). The deterministic methods are only used
in problems with a discrete and relatively small action and state space, and
the stochastic/non-deterministic methods are used in problems with a large,
continuous action and state space. Both P, and R, are implemented by the
programmer, so it is up to them to determine how often the agent should re-
ceive a reward and what exactly constitutes as a state.

2.1.1 The Discount Factor

Along with these 4 parameters, there is another parameter that is used as well:
the discount factor, represented as . The discount factor, which is a value
such that 0 < v <1, is multiplied by the output of the reward function to give
the final reward that the agent receives. The discount factor mainly serves a
purpose in the return and the greediness of the agent.

In all RL problems, the agent’s ultimate goal is to maximize its return
(the total discount reward that the agent will receive from now, time ¢, onwards).
The return is given by this equation,

G(t) = Ris1 + YRiro + YV Riyz + ... = Z'YthJrkJrl
k=0

where R is the reward function. In this equation, smaller discount factors make
the agent care more about short-term rewards and larger discount factors make
the agent care more about long term-rewards. To clarify, a discount factor of
0 makes the return R;;;, meaning that the agent would only care about the
immediate reward gained by taking its next action, and a discount factor of
1 means that the agent thinks that future actions are equally as important as
the next action that the agent will take, so the agent is far more willing to
experiment to reach the large long-term reward. In practice, however, discount
factors of both 0 and 1 are typically not used, because both are too extreme in
how they prioritize short-term rewards and neglect long-term rewards or vice-
versa.

Discount factors are not applicable to every problem, however, because if the
RL problem is an episodic task (a task where there is a terminating condition,
such as a game of tic-tac-toe, where the task ends when someone wins) then
rewards are typically assigned once—at the end of the task—and the return only
consists of R;y1, thus the discount factor is always 0 in these tasks. Instead,
discount factors are only applicable to continuous tasks (tasks which don’t end,
such as YouTube’s video recommendation system), because rewards are assigned
more often and there’s no terminating condition which resets the return.

2.1.2 The Agent

The second part of the MDP is the decision-making process, which describes the
agent. The agent uses one or more of the following components to determine

what action to do next:

e 7, called the policy function. This function decides which action to take

in a given state and involves two variables: a, the action, and s, the state.
7 can be written deterministically (with a lookup table implementation),

a=m(s)

or stochastically,
m(als) = Pr(A; = a|S; = s)

v (s), called the state-value function. This function calculates the value of
a state by predicting the return that the agent would get if it entered that
state given that it executes policy w. It’s used in the optimal state-value
function,

v4(8) = max v, (s)

which finds the policy which returns the maximum possible reward. v.(s)
is used in policy learning.

d= (s, a), called the action-value function, determines how good it is to take
a particular action in a certain state by calculating the expected return
after taking action a in state s and following policy 7 from then onwards.
This function is used in the optimal action-value function,

G+(5) = maz~qx (s, a)

which finds the action which returns the maximum possible reward. g.(s)
is used in g-learning, a method which determines the best action to take
at the current state.

The agent can also have a model, which is an algorithm which allows the
agent to predict what the environment will do next (e.g the next state,
the next immediate reward, etc.).

RL agents can be categorized as the following:

Value based: the agent uses ¢, (s) to pick the action that gives the highest
reward in the current state. These agents use g-learning.

Policy based: the agent tries to optimize its policy as much as it can
and picks actions based on v,(s).

Actor Critic: the agent uses both ¢, (s) and the policy to pick the action.

Model free: regardless of its use of the action-value function and the
state-value function, the agent does not use a model.

Model based: regardless of its use of the action-value function and the
state-value function, the agent uses a model.

3 RL Algorithms

So far, we have discussed the basics of RL and how to set up an RL program,
but we haven’t dove into the specific algorithms that RL programs use to get
the job done. These algorithms are typically the main focus of an RL program
(you’ll often see the specific type of algorithm used in the title of a research
paper that used RL to solve a problem), and they’re also the main focus of RL
research. RL algorithms are implemented in the agent and fall into one of the
categories discussed at the bottom of section 2.1.2. The following algorithms
are, by no means, and exhaustive list, but these are popular algorithms that can
be applied to a wide variety of topics. Other than these, some other algorithms
that you may want to research before writing an RL program to solve a task
are SARSA, NAF, A2C/A3C, and DDQN.

3.1 Q-Learning

The main focus of Q-Learning is to maximize the Q-value (the value returned
by g.(s,a)). This value determines how good the best action that the agent
can take really is. To do this, we have to make the agent learn ¢.(s,a). The
algorithm to do this is below.

(2-learning: Learn funetion ¢ : X' =« A =+ R
Require:
Sates X = {1,....,n:}
Actions A= {1,..., Ty by A: A= A4
Reward function f: A« A =R
Black-box (probabilistic) transition function T & = 4 — X
Learning rate o € [0, 1], typically a = 0.1
Discounting factor v £ [0,1]
procedure QLEARNING(A, A, B, T, o,)
Initialize ¢ : & x A — R arbitrarily
while ¢} is not converged do
Start in state s € X
while s is not terminal do
Calculate 7 according to Q and exploration strategy (e.g. wlz) «
arg max, (J(x, a))

i 4+— i8]
r Ris, a) & Receive the reward
s+ T(s,a) = Receive the new state

s a) (1 —a)-Qs,a) + o (r+ - max, Qs a’))

84— 8
return ()

Figure 3: Q-Learning Algorithm

Note that converging, in this case, means that we are unable to improve

g«(s,a) any further, terminal means the terminating state, and the black-box
transition function is the state transition function. Also, the policy is imple-
mented deterministically (via, for example, a lookup table which matches states
to actions) and is updated every iteration.

This algorithm works off of a g-table, which is a table of (state, action) pairs
and each pair is mapped to its respective expected total reward, which is calcu-
lated by ¢.(s,a), given below. Note: R is the reward function and p is the state
transition probability.

Q(s,a) = R(s,a) + yEo [V*(s)]
Q*(s;a) = R(s,a) +7 Y p(s'|s,a)V*(s")

s'eS
Since,

V*(S) = maxQ* (s, a)
V*(S) = max | R(s,a) +7) _ p(s'|s,a)V*(s)
“ s’eS
Figure 4: ¢.(s,a) and v.(s,a) Equations

After Q is learned, the RL program will use @ to pick actions until the
terminal state is reached.

3.2 Deep Q Network (DQN)

Convolution Convolution Fully connected

o
c
<
8
15
=}
@
Q
@
a

/ 8 / o\ . .
ofl | (B /m 1 |5
: AN o]
/] . . .
[/ ,’8 . . Q \\
Bt By m NG]
./ . \ . . =
i 0@ i@ :
-DD Q :@ Q I A]
8 . . .
e mE\=| Y
—SIE - RULEREE A
\ g \ o/ . .

Figure 5: DQN Illustration

The problem with Q-learning algorithms, as you may have noticed, is that they
only work for discrete state spaces and are inefficient for large state spaces. In
scenarios where the state space is continuous and/or large, we want to use a
DQN algorithm. DQN learns ¢.(s,a) via the use of a fully-connected neural
network, as shown in Figure 5. The neural network takes in the current state
as input and outputs the Q-value for each action.

The question, now, becomes the following: how do we train the neural net-
work? We want the neural network to learn Q until it is fully optimized, so we
have to maximize the highest Q-value across all actions. The equation to get
the maximum Q-value across all of the current actions in the given state (where
¢ represents the state and 0 represents the weights in the neural network) is the
following:

rj +ymaze Q(¢j41,a’507)

Using this equation, we can use the algorithm in Figure 6 to train the neu-
ral network. This algorithm uses experience replay, which is just a dataset of
(state, action, reward, next state) tuples that the algorithm uses for sampling
to train the network. Experience replay is necessary for training the neural net-
work because the data points in the experience replay dataset are separated by
time, which reduces the correlation between these otherwise highly-correlated
data points. Also, note that, in this algorithm, s is the current state before
preprocessing, ¢(s) is the function which returns the preprocessed state, and ¢
represents the preprocessed state.

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ =
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a, =argmax, Q(¢(s:),a; 0)
Execute action a, in emulator and observe reward r; and image x; ; ,
Set s¢41=S5¢,0:,%:+1 and preprocess ¢, ; =d(s¢+1)
Store transition (qﬁt,at,rt,d)tﬂ) inD
Sample random minibatch of transitions (d) -,aj,rj,(bj . 1) from D

rj if episode terminates at step j+ 1
Sety;= rj+y maxy Q(¢j+1,a’; 9_) otherwise

Perform a gradient descent step on (yj -Q (d)j,aj; 0)) ’ with respect to the
network parameters
Every C steps reset 0= Q
End For
End For

Figure 6: DQN Algorithm

3.3 Deep Deterministic Policy Gradient (DDPG)

Although DQN performs very well in situations where the action space is discrete
and relatively small, in problems where the action space is continuous or very
large, we must use a different algorithm. One such algorithm that you can
use which works regardless of how the state and action space are configured is
DDPG. DDPG is an Actor-Critic algorithm and it looks very similar to the DQN
algorithm, but it has an additional section for the policy. The critic evaulates
the policy generated by the actor via the Temporal Difference Error (TD Error)
function,
E=ri1+9V7(st41) = V7 (s1)

Figure 7 shows an illustration of how the DDPG algorithm looks.

\
———»| Policy ——
Actor
™D
Critic error
o | Value
state - g i
Function Helon
/
reward

Environment

Figure 7: DDPG Ilustration

An issue that DDPG produces is that it rarely explores or experiments when
finding new actions. To fix this, we add noise to either the nodes in the param-
eter space or to the action space, as shown in Figure 8. A popular method of
adding noise is the Ornstein-Uhlenbeck Random Process.

Action Action

{@}noise

Nobe<

Input Input

Figure 8: Adding noise to the action space (L) or the parameter space (R)

Note that in the DDPG algorithm shown in Figure 9, the random process
N is the method of adding noise to the parameter or action space, J is the
expected return, the replay buffer R is the dataset of experience replay data
points used to update the critic, the actor (via the use of a policy gradient,
similar to the gradient used in backpropogation for neural networks), and the
target networks, 6 represents the weights in the neural network, and the mixing
factor 7 is a hyperparameter which is typically very small—many people use
0.001 for 7.

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s, a|#?) and actor j(s|0*) with weights 6% and 6*.
Initialize target network Q' and yi/ with weights 09" + 09, 0" « @~
Initialize replay buffer
for episode = 1, M do
Initialize a random process A for action exploration
Receive initial observation state s
fort=1,Tdo
Select action a; = pu(s|0") + Ny according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s;41
Store transition (s¢, at, 7y, S¢+1) in R
Sample a random minibatch of N transitions (s;, a;,7;, s;+1) from R
Set g = ri +9Q (sis1. 1 (111 [0)|09)
Update critic by minimizing the loss: L = & Y, (y; — Q(sq, a;|0%))?
Update the actor policy using the sampled policy gradient:

1 L
Vould & ~ Z VaQ(5,a]09)] s=s,.amp(ss) Vo 1(10")]s,

Update the target networks:
09 709 + (1 — 1)
0 70" + (1—7)0"
end for
end for

Figure 9: DDPG Algorithm

4 Applications

RL Learning is used primarily in cases where there is little-to-no training data.
This is why RL is used in fields such as game development (in the making
of ”bots”), robotics, advertising, and content recommendation systems. For
example, RL is used in ”bot” development because, in this field, the algorithm
initially has no knowledge or experience of how to interact with its environment
and achieve the final goal. Other algorithms, such as Neural Networks or SVMs,
wouldn’t be able to function properly in environments like these because of the
lack of training data. This becomes a problem especially in situations where the
goal is to create an Al which is capable of outperforming humans (such as the
creation of AlphaGo), as in those cases you can’t even feed the other algorithms
data from humans playing the game. In content recommendation systems, for
instance, there’s no way to get any data on what a user’s preference for content
is when that user enters the platform for the first time, so an RL algorithm
must be used.

5 Conclusion

Reinforcement Learning is a rapidly expanding field which is especially useful in
fields where there is little prior data or testing, such as niche research fields or

10

research fields where the concept behind the research is very new. This lecture
should give a good background on RL and a couple of popular algorithms that
are used in RL.

6 References

e https://towardsdatascience.com/introduction-to-various-reinforcement-learning-
algorithms-i-g-learning-sarsa-dqn-ddpg-72a5e0ch6287

e https://towardsdatascience.com/reinforcement-learning-an-introduction-to-
the-concepts-applications-and-code-ced6fbfd882d

e https://towardsdatascience.com/getting-started-with-markov-decision-processes-
reinforcement-learning-ada7b4572fb

e https://joshgreaves.com/reinforcement-learning/understanding-rl-the-bellman-
equations/

e https://medium.com/@Qm.alzantot/deep-reinforcement-learning-demysitifed-
episode-2-policy-iteration-value-iteration-and-q-978f9e89ddaa

e https://towardsdatascience.com/deep-deterministic-policy-gradients-explained-
2d94655a9b7b

11

