
YOLO

Irfan Nafi

April 2020

1 Introduction

YOLO (You Only Look Once) is one of the most popular real-time object recog-
nition algorithms in the field of computer vision. In this lecture, we will look
at how YOLO works compared to more conventional models and how those
differences make it faster. As of the moment, there are four versions of YOLO
(YOLOv4 just came out!), with each version having several clever and complex
improvements. To keep this lecture simple, we will cover the general theory,
with additional focus on YOLOv3, instead of going too deep into one specific
version.

2 Applications

Due to YOLO’s ability to produce fast and accurate detections, it is applicable
across a wide variety of areas, from the military to self-driving cars to everyday
DIY projects. As of the moment, it is one of the most accurate computer vision
algorithms for its speed, with YOLOv3 reaching mAPs (mean average precision
- a metric to measure the accuracy of a model) of 61 at 20fps on the COCO
dataset. There are also smaller versions of YOLO, called Tiny YOLOs, which
can achieve FPS of over 240; however, this is at the cost of mAP with YOLOv3-
Tiny reaching mAPs of only 33. YOLO is suited anywhere real-time object
detection is needed, even being deployable on mobile applications due to Tiny
YOLO’s less complex architecture.

3 Process

Previous computer vision algorithms like Faster RCNN first propose regions
for objects and then classify them, taking much longer. In the first few steps
alone, it applies several convolutional layers, beginning with a layer that shrinks
the image by 16 times. Then it applies two more convolutional layers to that
feature map (the output of a filter applied to the previous layer). YOLO takes
a different approach, instead of classifying and locating the object (through a
bounding box) separately, YOLO does it simultaneously.

1



To find the dimensions of a bounding box, it might make sense to
calculate the coordinates directly, however during training, this leads to unstable
gradients, which makes it hard to train. Instead, YOLO takes advantage of the
fact that, in real life, the same types of objects have similar shapes and aspect
ratios with their dimensions, as shown by the image below.

Figure 1. Bounding boxes are not arbitrary. Cars have very similar shapes
with an approximate aspect ratio of 0.41.

This pattern across classes is why YOLO produces predetermined
boxes called anchor boxes, or priors, per object to calculate the final bound-
ing box as offsets of the anchor boxes (we will get into how it calculates the
offsets later). These boxes are based on the trends of shape, size, and location
of the class, as shown in Figure 1, and not on the actual object. This may seem
a bit arbitrary, but the better the anchor boxes, the better the final bounding
box.

To refine the anchor boxes to better cover the actual object, we use
K-means clustering. K-means clustering is a method to extract the structure of
data by partitioning it into K, non-overlapping clusters. Initially, we make ran-
dom points within the data, and then through an iterative process, the points or
centroids (because they are at the center of each cluster) positions are optimized.
In YOLO, boxes are used instead of points.

2



Figure 2. An example of how a K-means clustering algorithm iteratively
optimizes the positions of the centroids for each cluster group.

To optimize the positions of these centroids, there needs to be a func-
tion or distance metric to tell you how much to offset the points. The easiest
way may be to use the Euclidean distance. However, this results in larger boxes
generating more error, so instead, we use IoU. We calculate IoU by dividing the
intersection of the predicted boundary box and the ground truth (the actual
pre-determined boundary of the object) over the union of the two boxes. If they
don’t intersect at all, then the IoU is just 0.

Figure 3. A diagram depicting how IoU is calculated.

Finally, using the anchor boxes, the width and height of the bounding
boxes are calculated as offsets from the centroid of the anchor boxes. We will
talk about the final calculation of the values later.

3



Let’s bring together what we just covered and summarize the process
from the beginning. YOLOv3 first splits up the image into S by S cells. For
each grid cell, YOLO predicts five anchor boxes and takes the max across each
cell for which class, if the most likely. Figure 4 illustrates this.

Figure 4. Diagram illustrating how YOLO takes he max of each cell to find
the most likely class at that area.

Transformations applied to the anchor boxes result in 3 bounding box
predictions per cell. This also limits how close objects can be for YOLO to detect
them. The second image in Figure 7 illustrates all these class predictions, with
the same classes having the same colors. Calculations for the final values are as
follows:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th

The final values, bx, by, bw and bh, which are the center coordinates,
width, and height, respectively. The network, itself, predicts 4 of these same
types of coordinates, tx, ty, tw and th with cx and cy being the top-left coordi-
nates of the current cell. Finally, pw and py are the width and height of the

4



anchor boxes in that cell. To calculate the center coordinates, we put these
values through a sigmoid function and add the coordinates of the top-left of the
cell.

Figure 5. An illustration of how anchor boxes are used to find the coordinates
of the bounding box using offsets.

The width and height of the bounding box, or the offsets from the
centroid of the anchor boxes, are calculated relative to the top-left corner of the
current cell. It is also predicted by applying a log-space transformation to the
network predicted dimensions and multiplying them with an anchor.

Figure 6. Diagram showing how the width and height of the bounding boxes
are calculated based on the cell coordinates and anchor.

5



With each bounding box, there is also a score for the confidence of
that box, or objectness score, that represents the probability that the bounding
box contains the object. It is then passed through a sigmoid and interpreted
as a probability. The reason we don’t use softmax is because the probabilities
from each possible class have to sum up to 1, so if there are two related classes
associated with an object, say a woman and person, the probabilities will be low
for both of them. If instead, a sigmoid is used, the probabilities for each class
can be independent, so both woman and person can have high probabilities.
Softmaxing assumes that the classes are mutually exclusive, which, in a lot of
cases, they are not.

Figure 7. Diagram showing the 3 main steps YOLO takes to produce
bounding boxes.

4 Architecture

4.1 Introduction

A computer vision architecture is the way the model processes an image, usually
through a certain network of CNNs. YOLO is a fully convolutional network
(FCN), meaning it only uses convolutional layers. The architecture behind
YOLO is called darknet and is written in C and CUDA instead of TensorFlow.
In YOLOv3 a new version of darknet is released, Darknet-53 which has 53
convolutional layers. YOLO’s architecture is unique in that it uses the same
network for both classification and localization of the object (through bounding
boxes). The architecture is, thus, rather complex, so we will only look at its
major features.

4.2 Darknet-53

As shown in figure 8, after each batch, there is a batch normalization layer,
a method for improving the speed and stability of the network, with Leaky
ReLu activation - similar to ReLu except there is a small negative slope for
x < 0. Leaky ReLus help to solve the ”dying ReLu” problem which occurs
when ReLu updates a neuron in such a way so that it never activates on any
data point again. This problem, alone, can kill up to 40% of the network. No
form of pooling (a method to reduce the size of the feature map by taking the

6



average or max for a certain stride) is used, with a stride two convolutional layer
down-sampling the feature maps.

Figure 8. An architecture diagram for Darknet-53, alone.

YOLOv2 used Darknet-19, another custom deep architecture, which is
a 19 layer network with an additional 11 layers for object detection. With only
30 layers, YOLOv2 struggled to classify smaller objects. Yolov3 uses a variation
of Darknet-53 (which was trained on ImageNet - a dataset used as a metric for
computer vision algorithms) with 53 more layers for a total of 106.

Figure 9. A network architecture diagram for YOLOv3, including the 53
additional layers on top of Darknet-53.

7



5 Overview on Training

5.1 Introduction

YOLO is relatively easy to implement in projects. If you’re looking for general
object detection, there are already weights like those trained on Microsoft’s
COCO (Common Objects in Context), which has 30 classes, and weights trained
to classify 9,000 classes, a version called YOLO9000 (not very accurate). If you
are looking to train YOLO, then a great place to start is Google’s OIDv6 (Open
Images Dataset), which not only has over 600 classes with bounding boxes, but
also has object segmentation to train mask-based algorithms.

5.2 Managing Data

To train a specific class, you should have around 1-2 thousand images with a
variety of lighting, object size, rotation, etc. If there isn’t a sufficient num-
ber of files for training, then consider data augmentation. Data augmentation
is a technique to modify existing images, through rotation, translation, Gaus-
sian noise, etc. Data augmentation helps in reducing overfitting and improves
generalization because of its ability to produce more training samples.

5.3 Steps

1. Split it into two distinct groups, one for training (70-90% of the data) and
the other for testing

2. Download and build darknet to work with your machine, specifcally the
GPUs

3. Annotations are human-made classifications of objects in images, which
include bounding boxes and segmentations (the actual area of an object).
You should only use datasets with annotations, but if there are not any
available, use annotation software online.

4. Next, download a pre-trained model. This is called transfer learning and
is what happens when a pre-trained model trained on other data is used
to train another. Transfer learning is faster than starting from scratch, as
it makes the learning process much smoother. For YOLOv3, darknet-53,
which is trained on ImageNet, is a great place to start.

5. Choose all the hyperparameters and start training

6. As the training progresses, the log file will contain the loss from each batch.
Once the loss has fallen below a certain threshold or stopped decreasing
all together, then you should stop training.

8

https://storage.googleapis.com/openimages/web/index.html


Figure 10. Example of a loss vs batch graph for a model trained on
Darknet-53.

5.4 Advice

From my own experience, managing all the files (there are thousands per class!)
was, at times, a tedious process that resulted in restarting training times. My
advice is to start small, just to understand the process, and build-up towards the
final number of classes. Also, make sure you configure your Makefile for the GPU
you’re training on. Alexey Bochkovskiy created a forked YOLO repository that
is great for GPU compatibility on darknet and is, in general, a better version.

6 Conclusion

The field of computer vision has taken off in the last few years with the avail-
ability of large datasets and powerful computing. Every year, faster and more
accurate algorithms are released, but none are as accurate as YOLO is at the
speeds it is capable of. YOLO’s ease of use makes it applicable to a wide range
of areas, advancing the computer vision field as a whole. YOLO’s different ar-
chitecture and approach to processing an image, looking at it only once, is its
differentiating factor and is what makes it so much faster.

7 References

The figures in this lecture were also from the following resources:

1. Redmon, J., and Farhadi, A. (2018). YOLOv3: An Incremental Improve-
ment. Retrieved from https://pjreddie.com/media/files/papers/YOLOv3.pdf

2. Redmon, J., and Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger.
Retrieved from https://pjreddie.com/media/files/papers/YOLO9000.pdf

9

https://github.com/AlexeyAB/darknet/


3. Redmon, Joseph, et al. “You Only Look Once: Unified, Real-Time Object
Detection.” ArXiv:1506.02640 [Cs], May 2016. arXiv.org, http://arxiv.org/abs/1506.02640.

4. YOLOv3 theory explained. (2019, July 4). Retrieved April 29, 2020, from
https://medium.com/analytics-vidhya/yolo-v3-theory-explained-33100f6d193

5. Hui, J. (2018, March 17). Real-time Object Detection with YOLO, YOLOv2
and now YOLOv3. Retrieved April 29, 2020, from https://medium.com/@jonathan-
hui/ real-time-object-detection-with-yolo-yolov2-28b1b93e2088

6. Tsang, S.-H. (2019, February 7). Review: YOLOv3 — You Only Look
Once (Object Detection). Retrieved April 29, 2020, from https://towardsdatascience.com/
review-yolov3-you-only-look-once-object-detection-eab75d7a1ba6

10


	Introduction
	Applications
	Process
	Architecture
	Introduction
	Darknet-53

	Overview on Training
	Introduction
	Managing Data
	Steps
	Advice

	Conclusion
	References

