
KNNs & Naive Bayes

Charlie Wu∗

November 2019

1 Introduction to KNNs

The K-Nearest Neighbors (KNN) algorithm is a simple classifier and regressor
that does not make any preliminary and inherent assumptions about data. In
short, a KNN finds the k-nearest neighbors to a specific feature vector using a
distance metric, and uses the most common of these k neighbors to classify the
specific unlabelled vector. A KNN takes in labelled training data and tries to
adapt to the composition of the data in order to classify novel data. This is
useful as many new real-world data need to be judged based off of similarity to
existing clusters of data.

2 KNN Classification

The KNN algorithm used for classification is structured as follows:

1. Given a set of training data with features x1, x2, ..., xn and labels y, one
unlabelled feature vector to be classified, and a manually defined value k.

2. The ”training” phase of this algorithm consists of only storing these fea-
ture vectors and labels, and initializing a similarity function to judge the
similarity (closeness, distance) of two given vectors.

3. Classification is done through an O(N) search of all the given training
feature vectors, sorting the results by similarity (taken from the similarity
metric).

4. The first k values returned (the k most similar feature vectors in the
training data) are the ”k-nearest neighbors”.

Put simply, the unlabelled data can take on the most common class of the k-
nearest neighbors. This system of choosing the mode is known as ”majority
voting”.

∗Naive Bayes based on Sylesh Suresh’s lecture of the same name

1

In this example, all of the points are plotted on the 2d plane, so each fea-
ture vector contains two continuous features (plotted as x and y values). The
green dot is being classified, and the red and blue dots signify different classes
that the points take on. If k = 3, the three most similar (closest) points are
the three points bounded in the solid black line. In this case, the KNN would
classify the green point as being of the red class.

Figure 1: KNN Classification example

3 Similarity/Distance Metric

One key fundamental of a KNN algorithm, as you may have noticed, is the
ability to judge the similarity of two feature vectors. This is most commonly
done with the Euclidean distance (think ’distance formula’ in geometry, applied
to every feature in the feature vectors). The Euclidean distance works well
when applied to datasets with features involving continuous variables, but fails
when the features are discrete. In this case, another metric may be applied. For
instance, the Hamming distance, which measures the overlap of two discrete
feature vectors. With Hamming, the distance between the words ”Amazin” and
”Amazon”, would be 1 (the only difference being the i and the o), while the
distance between ”games” and ”named” is 2.

4 Weighted Voting

In a training dataset that may contain an skewed class distribution, weights can
be applied to the ”majority voting” system of classifying the unlabelled data.
This new method can apply a weight inversely proportional to the similarity
metric calculated to each of the k-nearest neighbors, better accounting for the
unequal class variation.

2

5 KNN Applications

KNNs can be most commonly found in various recommendation systems. Due
to their access to large amounts of consumer data, large companies often are
able to train KNNs to make the best recommendations of similar or well-liked
products to consumers, given enough history of that consumers’ interests. Some
examples can include Youtube recommending different channels to watch based
on a person’s watch history and current subscriptions. More specific recommen-
dations can also be made on a large scale, such as in the case of Spotify creating
a daily mix of new songs that might appeal to a user.

3

6 Introduction to Naive Bayes

Naive Bayes is a simple supervised classifier based on Bayes’ theorem that,
despite its assumption that there is independence between every pair of features
of the input given its classification, tends to perform quite well.

7 Derivation of Bayes’ Theorem

We can start off with one of the basic probability equalities:

P (A|B) =
P (A ∧B)

P (B)

This reads: the conditional probability of event A given that event B has
occurred is equal to the probability of both event A and event B occurring
divided by the probability of event B. What we want to find is a relationship
between P (A|B) and P (B|A). You can imagine that finding this relationship
would be useful in machine learning. It would be able to calculate the probability
of a data sample belonging to a certain class given the features of that data
sample (the goal of a classification machine learning model) using the probability
that a data sample has certain features, given that it belongs to a particular
class (something we can calculate from training data).

So, getting back to the equation, if we multiply both sides by P (B), we get:

P (A|B)P (B) = P (A ∧B)

Note that P (A∧B) = P (B∧A), and furthermore, P (B∧A) = P (B|A)P (A).
Thus,

P (A|B)P (B) = P (B|A)P (A)

Dividing both sides by B, we arrive at Bayes’ theorem:

P (A|B) =
P (B|A)P (A)

P (B)

Let us consider an example. We want to determine if a specific applicant will
receive a job they apply for, given data on previous applicants who applied for
the same job, with a discrete feature of the applicant: if they have a college
degree. In this case, the probability that they get the job given their degree
status = (the probability that previous applicants who got the job had a college
degree) ∗ (the probability any previous applicant got the job) / (the probability
any previous applicant had a college degree)

4

8 Bayes’ Theorem

We can apply Bayes’ Theorem to machine learning. Specifically, say we are given
a data sample with n features, x1, x2, x3, ..., xn. We want to find the probability
that this data sample belongs to a particular class y. In other words, we want
to calculate P (y|x1 ∧ x2 ∧ x3...∧ xn). (We can use commas instead of the ’and’
symbols for shorthand, writing the probability instead as P (y|x1, x2, x3, ..., xn)).
Using a dataset of samples which are each labeled with the class y and features
x1, ..., xn, we want to calculate this probability. In other words, consider the job
applicant example from before, except now with the job recruiter considering
more features, or more qualities of the applicant. Instead of only considering
their college degree status (x1), they could also start to consider if they have
previous job experience (x2), if they fit in well with the workplace (x3), if they
are a business major (x4), along with a multitude of other features up to (xn).
We can apply Bayes’ Theorem:

P (y|x1, ..., xn) =
P (y)P (x1, ..., xn|y)

P (x1, ..., xn)

The numerator of the right-hand side of the equation can be condensed as
P (A|B)P (B) = P (A,B):

P (y|x1, ..., xn) =
P (x1, ..., xn, y)

P (x1, ..., xn)

Using the same law, P (A|B)P (B) = P (A,B), we can decompose the nu-
merator like so:

P (y|x1, ..., xn) =
P (x1|x2, ..., xn, y)P (x2, ..., xn, y)

P (x1, ..., xn)

Then, we can decompose the second factor of the numerator in a similar
fashion:

P (y|x1, ..., xn) =
P (x1|x2, ..., xn, y)P (x2|x3, ..., xn, y)P (x3, ..., xn, y)

P (x1, ..., xn)

We can keep decomposing the last factor in the numerator until we arrive
at:

P (y|x1, ..., xn) =
P (x1|x2, ..., xn, y)P (x2|x3, ..., xn, y)...P (xn|y)P (y)

P (x1, ..., xn)

This is nice, but we usually cannot calculate the numerator directly if we
are given an unseen sample. If we could, we would already have a sample in our
training dataset with the exact same features x1, ..., xn. The goal is to be able
to arrive at an expression that allows us to handle the general case.

At this point, we will have to make a (somewhat fallacious) assumption
about the data in order to arrive at a meaningful expression. The assumption

5

is that each of the features of the data is independent from every other feature.
In other words, the probability that a certain feature takes on a certain value is
independent of the values that other features take on. In our example of a job
applicant, we would have to assume each quality of the applicant as independent
from every other quality. We would then regard, for instance, the applicant’s
possession of a business major as being independent from whether they have a
college degree or not. This is definitely not true for examples such as this one,
which is why we refer to the classifier as ”naive”. However, it turns out that
the classifier tends to make fairly accurate predictions, even in situations such
as this.

The reason we make this assumption is because we really don’t like all the
conditionals in each probability. This assumption will make all those con-
ditionals go away. If a feature is independent of every other feature, then
we can simply remove the features from the conditional part of the proba-
bility. For example, let’s look at P (x1|x2, ..., xn, y). Our assumption says that
feature x1 is independent of features x3, x4, x5 and so on. This means that
P (x1|x2, ..., xn, y) = P (x1|y) - we can take out all the other features from the
conditional. Moreover, we can do this for every single probability with features
in the conditional. This is useful because we can then simplify our equation to:

P (y|x1, ..., xn) =
P (x1|y)P (x2|y)P (x3|y)...P (xn|y)P (y)

P (x1, ..., xn)

We can use capital pi (product) notation to write the n factors in the nu-
merator:

P (y|x1, ..., xn) =

P (y)
n∏

i=1

P (xi|y)

P (x1, ..., xn)

This is the fundamental equation of naive Bayes. Specifically, when we are
given a sample with an unknown class and features x1, ..., xn, we can calculate
P (y|x1, ..., xn) for each possible class y. The class that returns the highest
probability when plugged into the equation would be the correct classification
for the sample. Each P (xi|y), or in our example, probability a previous applicant
had a certain feature, given that they eventually got the job, is easily calculable
from training data on previous applicants.

Note that P (x1, ..., xn) does not depend on y (is constant with varying values

of y), so we can simply maximize P (y)
n∏

i=1

P (xi|y) with respect to y, which will

yield our class prediction.

9 Continuous Features

The expression we derived above will work cleanly for categorical features, as
we can fairly simply calculate P (xi|y) for any specific value of the categorical

6

feature xi and specific class y. We can do this by dividing the number of samples
in our training dataset with that categorical feature and class y by the number
of samples with the class y.

Continuous features are a completely different beast. Working with continu-
ous features, we must define P (xi|y) with a probability distribution. It is very
likely that the samples in our dataset will have continuous features that take
on values close to - but not exactly equal to - continuous features we will see in
the real world. For example, say we are trying to predict the species of flower
based on flower heights. We may have a flower in our training dataset with
a height of 30 cm. If we are asked to classify a flower with height 29.5 cm,
it is likely that flower will be of the same species as the 30 cm flower in our
dataset. Due to the heights not being exactly the same, an issue arises. Since
there is no 29.5 cm flower, when we try to calculate P (x1|y), the probability
will turn out to be 0, a pretty bad prediction. The solution is to introduce a
probability distribution, which shows that since 29.5 and 30 similar and close
heights, it is likely that the 29.5 cm flower is the same species as the 30 cm flower.

One way to define this probability distribution is with a Gaussian distribution.
If the training data has a continuous feature xi, we will separate the training
data samples based on its class y. For each set of samples with class y, we must
calculate the mean µy and the variance σ2

y. We can now define P (xi|y) as:

P (xi|y) =
1√

2πσ2
y

e
−(xi−µy)2

2σ2y

This equation might seem intimidating at a first glance, but we are only plug-
ging our calculated µy and σ2

y into the standard Gaussian probability density
function. This allows us to solve the previously defined maximization problem
to calculate our class prediction. Assuming a normal distribution may not al-
ways be the best answer compared other probability distributions we can define
to increase the accuracy of our model, but for the sake of simplicity, the normal
distribution serves as a decent approximation.

10 References

10.1 Images

• Fig. 1: https://commons.wikimedia.org/wiki/File:KnnClassification.svg

7

