
Hyperparameters and Network Tuning

Charlie Wu∗

December 2019

1 Introduction

Neural networks are extremely powerful and multifunctional tools in machine
learning. However, there are numerous variable hyperparameters, and there are
no solid rules or hard guidelines on how to decide their values. For example,
how many different layers should the network have? How many nodes in each
layer? What should the learning rate be? Adjusting the hyperparameters is
crucial to creating a successful model.

2 Network Design

The first question that arises when making a model is how many layers and
nodes in each layer there should be. To begin, we know there has to be an input
layer and an output layer, which are constrained in the number nodes depending
on the problem.

For the hidden layers, there is no real guideline to follow. Generally, more
hidden layers allows the network to understand more advanced patterns, but
takes more time and data. However, this could also mean that the network might
be overfitting (fitting the model to the specific a dataset, and not creating a
generalization for the underlying patterns). In other words, the model could just
be memorizing the data, instead of understanding how to derive the appropriate
results from any set of given data. With good hyperparameters, we shouldn’t
need to worry about this, and as long as we have enough computing power, we
should be able to add many layers.

3 Regularization

Now that we know we want to have many layers in our model to have deep
learning, how do we stop overfitting? One way we can do this is through reg-
ularization. Regularization modifies the loss function to punish more complex
models. There’s 2 main regularization techniques that are used.

∗Based off Mihir Patel/Vinay Bhaip’s lecture of the same name

1

1. L1 ”Lasso” Regularization - Adds the absolute value of all the weights in
a network to the error function.

L1 = Error + λ

k∑
i=1

|wi|

2. L2 ”Ridge” Regularization - Adds the squares of all the weights in a net-
work to the error function.

L2 = Error + λ

k∑
i=1

w2
i

Both of these regularization techniques minimize the complexity of the net-
work, thereby reducing the likelihood of a model that overfits to training data.
In some cases, L1 and L2 regularization will also be combined for ”elastic net”
regularization. L1 Regularization has been shown to be work better with clas-
sification problems, while L2 Regularization is good at essentially everything
else.

4 Dropout

Another method to regularize networks is dropout. During each set of forward
and back-propagation passes through the network, a defined percentage of the
nodes in each layer will be ignored. This reduces the dependency of nodes in the
network with one another, and helps create a more robust network. It ensures
that every node is learning some valuable information and the result of the
network isn’t dependent on the usefulness of just a specific few nodes. In the
figure below, you can see dropout being applied on a select set of random nodes
during a pass through the network.

Figure 1: Dropout on a Network

2

5 Batch Size

When working with machine learning in the real world, large datasets can ob-
viously contain errors, like mislabeled images. If we backpropagate after every
forward propagation, the network might have a gradient that shifts it the wrong
way. To combat this, we can adjust the batch size: the number of data points
that the network will forward propagate before going through back propagation.

Having a small batch size means that backpropagation will occur more fre-
quently, and the weights will update faster, but probably less accurately. On the
other hand, having a large batch size means the weights will update slower, but
probably more accurately. Generally, it is advantageous to choose the largest
batch size that our machine’s RAM can handle.

6 Learning Rate

In gradient descent, we look for the direction of the steepest decline. Once
we have that gradient, we need to decide how far we should go down in that
direction. This value (that is multiplied by the gradient) is called the learning
rate. If we choose a learning rate too small, it would take forever for the network
to converge on the minimum error rate. Additionally, we could get stuck in local
minima, a point that is the lowest point relative to its close surroundings, but
not the lowest relative to the entire function (this can be seen in the figure
below). Conversely, if we choose a learning rate too large, we can accidentally
skip over the minimum (if the minimum is at 2.5 and we go from 2 to 3 with a
step size of 1).

Figure 2: Minima of the Error of a Network

One possible way of addressing this is by using momentum. Momentum
adds acceleration into gradient descent. Over iterations, as the steepest decline

3

gradient is computed, the learning rate grows, picking up in ”speed”. A good
way to think of this is as if a ball was put on the error function graph. The ball
would gain speed as it goes downhill and lose speed as it goes uphill. This helps
avoid local minima as there would a large enough step size to avoid them (in
the case of the rolling ball, the ball would gain enough velocity to ’jump over’
the local minima it encounters).

7 Activation Functions

A major problem that arises in networks is the vanishing gradient problem. To
understand this problem, lets assume we have 4 different layers: an input layer,
2 hidden layers, and an output layer. The gradient of the error with respect to
the fourth layer is:

∂E

∂w4

To calculate the gradient of the error with respect to the third layer, we use
the chain rule and get:

w4 × σ′(w4 × a3 + b4)× ∂E

∂w4

In these expressions, E denotes the error, wj denotes the weight matrix of
a layer, bj denotes the bias of a layer, and aj−1 denotes the output from the
previous layer. As you may notice, there is more and more stuff that is getting
multiplied as we compute the gradient in earlier layers. As a node converges to
its optimal value, the derivative approaches 0. Although this is helpful because
we don’t want to have to retrain this node, this affects previous layers too, by
creating a smaller and smaller gradient.

Figure 3: Sigmoid Function and its Derivative

Lets look at a list of activation functions to see if we can find one that avoids
the vanishing gradient problem.

4

Figure 4: Different Activation Functions

1. Sigmoid:
1

1 + e−x

This is the function we’ve been using normally in our networks.

2. Tanh:
ex − e−x

ex + e−x

This function looks more complicated and has a more complicated deriva-
tive, which means it’ll take more time to compute. A key difference be-
tween hyperbolic tan and sigmoid is that tanh ranges from -1 to 1, rather
than 0 to 1. To understand why this is important, imagine a network
had inputs that were all positive. If we were to use sigmoid, the gradients
would all have the same sign, meaning the weights can only increase or
decrease together. Tanh allows different layers to have different signed
gradients to update.

3. ReLU:
max(0, x)

This function looks a lot more simple. The derivative of ReLU, or the
Rectified Linear Unit, is very easy and fast to compute. When x is positive,
the deriviative is 1, otherwise, the derivative is 0. This avoids the vanishing
gradient problem because the derivative is just 1, so when multiplied over
and over again, the product won’t tend towards 0.

4. Leaky ReLU:
(x < 0)αx+ (x >= 0)x

5

The problem with ReLU is that when the input value is negative, ReLU
has a derivative of 0. If a node constantly passes in a negative value
into the ReLU activation function, then the node will not update, as the
derivative will make the gradient 0. This can occur, for example, if there
is a large negative bias in a node. Since the node will never update, it is
”dead”. Sigmoid and Tanh can also suffer from this problem, but at least
there’s a little gradient flowing through to help it recover. Leaky ReLU
seeks to solve the ”dying ReLU problem” by having a small incline on the
negative side of the function. In the above expression, α is a small value,
commonly 0.01. This allows ReLU nodes the chance to recover.

8 Optimizers

We’ve seen that preventing getting stuck in local minima and efficiently updating
weights is hard. To account for this, various modifications to the backpropaga-
tion algorithm have been proposed to produce more efficient weight updating
and increased stabilization. We won’t go into how they work because it’s pretty
complex. However, there are a few key features that we will highlight.

1. Learning Rate: Look at section 6.

2. Momentum: Momentum is a trick to prevent getting stuck in local minima.
At each update, we factor in the change that we did the previous step,
maintaining larger strides if our previous strides were big and vice-versa.

3. Decay: At each step, the weights are all multiplied by a constant less than
one. This prevents exploding values just like L1 and L2 regularization.

4. Epsilon: At each step, some fuzz / noise is applied to the weights and
biases, helping increase regularization and decrease the possibility of over-
fitting.

5. Lots of other variables: Read the documentation for specific optimizers to
learn more.

Here are a brief sample of some optimizers that are most commonly used.
These are just a few examples of many, and we encourage you to explore various
optimizers and their functionalities yourselves.

1. (Stochastic/Mini-batch/Batch) Gradient Descent: Normal updates! Basi-
cally the run-of-the-mill algorithm that involves the least amount of com-
putation.

2. RMSProp: Divides learning rate for a given weight by a running average
the magnitude of recent gradients. Useful in RNNs.

3. Adam: Also adapts learning rates for given weights. Similar to RMSProp,
but also includes momentum-like functionality. In general, this is the best
one to use.

6

