
Neural Networks III: Backpropagation

Vinay Bhaip∗

December 2019

1 Introduction

Last week, we went over how forward propagation in neural networks works.
Forward propagation, as you should recall, is the process in which we feed a
data point into a neural network and see what our network classifies the data
point as. The next question then becomes how do we create the model to
accurately classify the data points.

In this lecture, we’ll go over how backpropagation works. Backpropagation
is how neural networks are able to update weights and biases to optimize their
ability to classify data.

The first section in this lecture was covered in the last lecture as well, but
is in this lecture as a conceptual review for the math of backpropagation.

2 Introduction to Backpropagation

Backpropagation is how neural networks actually learn. This is the process in
which neural networks are able to adjust weights and biases. Backpropagation
attempts to minimize the error function of the model. What does we mean by
this? When we build a neural network, we often have thousands of data points,
which each have features and some ground truth label. We can pass all these
data points into the network and see whether our model was right or wrong. The
degree to which our model was wrong is known as the error. Backpropagation
attempts to see how modifying the weights and biases can reduce the error and
ultimately make the model perform as accurately as possible.

2.1 Error

Consider the following network:

∗Based off Nikhil Sardana’s Forward/Backpropagation Lecture

1

x0 x1

W1

x2

W2

For the input x0, let y represent the target vector, or the ground truth. x2 is
our model’s prediction. We define the error as

E =
1

2
||x2 − y||2

Essentially, this is the magnitude of the difference between the target and
the network’s output. The reason we choose to define the error in this way is so
that the derivative of E with respect to y is just x2 − y. In order for a network
to become more accurate, we want to minimize this error.

Let’s think of E as a function. Only x2 can vary, and we can only control
this by changing the weight matrices and the bias matrix. Thus, for a neuron
with n weights and a bias, the error can be graphed as an n + 2 dimensional
function. This is because there are n weights, 1 bias, and an original input (X0).
For the network depicted above, there are 20 total weights (3∗4+4∗2 = 20) and
6 biases to determine the error, which means that there are a lot of dimensions.
If we can find the correct values for these weights and biases, we can get to the
minimum of this function. This means we will have minimized the error and
trained the network.

2.2 Gradient Descent

Most of the time, we will be dealing with many dimensions, so let’s pretend
we have a very simplistic error function that only deals with three dimensions.
How do we get to the minimum? We use gradient descent, of course!

2

A multi-dimensional function. Look how you can see the minimum!

Gradient descent is simple: Starting at some point, we move in the direction
of steepest decline for a certain length. Then, at our new point, we again
compute the direction of steepest decline, and move in that direction for a
certain length. We repeat this process over and over until every single direction
is an incline, at which point we are at the minimum. One way you can think of
this is as if we were to drop a ball at our location and watch it roll down until
we reach a minimum.

This has three issues. First, how do we know how long our steps are? Take a
step too long, and we could overshoot the minimum. Take a step too short and
it will take us many steps to reach the minimum. This is essentially the same
thing as the learning rate α we used in the perceptron lecture. The step length
is actually just a constant set by the programmer, and normally ranges from
0.1 to 0.0001. Adjusting the constant to get the best result is an important
practical topic for getting the best result, and we will discuss this in a later
lecture. For now, just know that it’s a constant.

Secondly, gradient descent is not guaranteed to get us to a minimum. What
if there are multiple minima, and we just happen to land in a local minimum,
like the many in the function below?

3

Getting out of local minima to reach the global minimum is another impor-
tant machine learning topic. Different optimizers can help the network pop out
of local minima using momentum, but this topic is complex and modern, so it
is covered in a later lecture. For the purposes of explaining gradient descent,
we’ll just pretend we’re working with an error function with one minimum.

The third final question is how we know which direction is the direction of
steepest descent. To do this, we must calculate the gradient.

A quick note: you may be asking why we can’t just calculate the minimum
instead of going through gradient descent. With the error function, we only
know information of what the derivative of the function is at that one point.
Additionally, it is complicated to find the minimum given many dimensions that
are given with a complicated neural network.

2.3 Gradients

The gradient is an extremely useful technique to find the direction of steepest
ascent. Let’s consider a simple two-dimensional parabola:

From elementary calculus, we know that:

f(x) = x2

f ′(x) = 2x

4

The derivative gives us the instantaneous rate of change for any x. If we
have a function in terms of x and y, we can take the derivative of f(x, y) with
respect to x to find the rate of change in the x direction, and the derivative with
respect to y to find the rate of change in the y direction. These are called partial
derivatives. We treat the other variables like we would any other constant.

Let’s do an example. Given f(x, y) = 2x2 + 3xy+ y3, the partial derivatives
are:

∂f

∂x
= 4x+ 3y

∂f

∂y
= 3x+ 3y2

The gradient of f(x, y), or ∇f(x, y) is just the vector:(∂f
∂x
,
∂f

∂y

)
For our example, the gradient is:

(4x+ 3y, 3x+ 3y2)

This is the direction of steepest ascent. This lecture will not go into the math-
ematics as to why this is true, but we strongly encourage you to look into why
this is the case.

With backpropagation, we want to use gradient descent. The gradient itself
points in the direction of steepest ascent, so naturally taking the negative of the
gradient points in the direction of steepest descent.

Now that we’ve got that covered, in order to find the minimum of a multi-
dimensional function, we just need to compute the gradient, move in the negative
of that direction for a certain length, and repeat until the gradient is 0. There
remains one more problem: how do we compute the gradient for our network?
Our function is

E(W, b) =
1

2
||o− t||2

Where o is the network output at t is the target. Since the error is in terms
of the weights and biases, that means that we need to compute:(∂E

∂W1
,
∂E

∂W2
, ...,

∂E

∂bn

)
This is why backpropagation is a fundamental concept in machine learning.

It allows us to compute this gradient in a computationally efficient manner.

2.4 Vectorized Backpropagation

Non-vectorized backpropagation becomes extremely convoluted, so we’ll be look-
ing at vectorize backpropagation to begin with. Remember, vectorized back-
propagation means that we will be using matrices.

Consider the following network:

5

x0 x1

W1

x2

W2

Ignoring biases (which we will see follow a relatively simple rule), we know
from forward propagation that:

x1 = σ(W1x0)

x2 = σ(W2x1)

And the error is, assuming some 2× 1 target vector y:

E =
1

2
||x2 − y||2

Let’s first take the partial derivative of E with respect to W2. This is just
like taking a normal derivative (using the chain rule).

∂E

∂W2
= (x2 − y)

∂(σ(W2x1))

∂W2

∂E

∂W2
= [(x2 − y)� σ′(W2x1)]

∂W2x1
∂W2

Here, � is the Hadamard product, or element-wise multiplication. (Remem-
ber, these are all vectors). For the sake of simplification, lets define

δ2 = (x2 − y)� σ′(W2x1)

Then, we can rewrite the partial as

∂E

∂W2
= δ2

∂W2x1
∂W2

= δ2x
T
1

Note that xT1 means that the x1 vector has been transposed (i.e. it is a row
vector). This is essential for the dimensions to work out, which we can check
now.

Since the whole point is to update the weights by some factor every time we
backpropagate in the direction of fastest descent to minimize the error, we want
to subtract the partial matrix (since it is in the direction of fastest ascent):

6

Wi = Wi − α
∂E

∂Wi

where alpha is the learning rate. This requires ∂E
∂Wi

to be the same dimensions
as Wi. Using W2 as an example, we know that

x2 = σ(W2x1)

where x2 is a 2×1 vector, x1 is a 4×1 vector, so W2 is a 2×4 matrix. Thus, both
∂E
∂Wi

and δ2x
T
1 are also 2 × 4 matrices. Since δ2 = (y − σ(W2x1)) � σ′(W2x1),

and we know y is a 2× 1 matrix, δ2 has dimensions 2× 1. If δ2 is 2× 1, then it
must be multiplied by a 1× 4 vector to create a 2× 4 matrix. Since x1 is 4× 1,
it must be transposed to become 1× 4.

Let’s continue to the next weight matrix.

∂E

∂W1
= (x2 − y)

∂(σ(W2x1))

∂W1

∂E

∂W1
= [(x2 − y)� σ′(W2x1)]

∂W2x1
∂W1

∂E

∂W1
= δ2

∂W2x1
∂W1

= WT
2 δ2

∂x1
∂W1

Substituting in for x1, we get:

∂E

∂W1
= WT

2 δ2
∂(σ(W1x0))

∂W1

∂E

∂W1
= [WT

2 δ2 � σ′(W1x0)]
∂W1x0
∂W1

Again, we simplify this:

δ1 = WT
2 δ2 � σ′(W1x0)

and we finish with
∂E

∂W1
= δ1

∂W1x0
∂W1

∂E

∂W1
= δ1x

T
0

We can generalize this for any layer. The only difference is the delta for the
last layer:

δL = (xL − y)� σ′(WLxL−1)

The delta for every other layer is:

δi = WT
i+1δi+1 � σ′(Wixi−1)

7

And the gradient for every weight matrix are calculated and the weight
matrices are updated as follows:

∂E

∂Wi
= δix

T
i−1

Wi = Wi − α
∂E

∂Wi

For biases, the rule is simpler:

bi = bi − αδi
That is the essence of backpropagation. Note that these formulas work for

any activation function. The reason we use sigmoid to teach this is because its
derivative is fairly straightforward:

σ′(x) = σ(x)(1− σ(x))

3 Conclusion

The past three lectures should give you a solid foundation on how neural net-
works work. The best way to fully understand these concepts is through prac-
tice. For this reason, there are two things we recommend you do:

1. Complete the problem set on neural networks. This is due next week.

2. Work on the Kaggle competition (https://www.kaggle.com/c/nn4) to cre-
ate a neural network from scratch to classify images of hand-written digits.
This is a famous dataset known as MNIST. Since this is the most hands-on
coding competition you’ll be doing, you’ll have much more time to work
on it. The competition is due after break (January 15th), though you
shouldn’t need to work on it during break to get it done.

8

