TJHSST Al/ML CLUB SEMINAR SERIES

INnfroduction and Recent

Advances in Deep
Reinforcement Learning

DR. RAJ DASGUPTA

NAVAL RESEARCH LABORATORY, WASHINGTON D. C.
EMAIL: RAJ.DASGUPTA@NRL.NAVY.MIL

mailto:raj.Dasgupta@nrl.navy.mil

Outline

Review of Reinforcement Learning (RL)
Action-Value Methods
Q-learning
Deep Q-learning
Policy Based Methods
REINFORCE

Actor-Critic Learning
A2C (Advantage Actor-Critic) and A3C (Asynchronous A2C) Learning algorithm
Proximal Region Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO) algorithm

Background Required:
Convolutional Neural Network (CNN) — for deep RL
Markov Decision Processes (MDP) — for mathematical framework underlying RL

Reinforcement Learning

Recall: Supervised (and unsupervised) learning algorithms learn a
hypothesis that is consistent with the distribution of data used to train the

algorithm
Reinforcement learning (RL) uses a reward function to learn a policy
Policy: mapping from state to action — what to do in which situation

Policy must maximize the reward that the agent gets (from solving the problem)

RL Framework

Representation of the problem being solved by the RL algo
Mostly represented as a stochastic process called Markov Decision Process (MDP)
MDP has 4 attributes: (S, A, T, R)

S: State space: what are the states of the problem

A: Action space: what are the actions that the agent can take

T: Transition Function, also called model of the problem: if the agent takes a certain action
at a certain state, what next state does it end up in ¢

R: Reward Function: what is the reward that the agent gets when it reaches a state?e
MDP output is a policy, denoted by «

7 is a mapping from state space to action space: what (is the best) action that the agent
should take for every state in S

Example of MDP:

Gridworld

Objective: Robot has to reach G from its start location (green) :
MDP formulation: L
S: all the cells of the grid, e.g., (0, 0) (O, 1)...
i A: North, South, East, West (red arrows on bottom right) ® ,__,I(__,
Ic\]/Sen T. e.qg., if robot does action N at (1, 1) it reaches (1, 2)]
inpu’r Ta Written as a function: T((1, 1,), N) = (1, 2) 8x8 gl’ld world

MDP T could be probabilistic too: Doing N at a cell takes the robot one cell north 90% of the time, but
takes it one cell east or west 5% of the fime resp.

Writtenas: T ((1, 1), N, (1,2))=0.9;T((1,1),N, (0, 1))=0.05T((1,1).N, (2, 1)) =0.05...for each cell and for
each action

R: e.g., +10 forreaching a cell 1-hop from G, +8 for cells 2-hops from G and so on (e.g., R(6,
5)=10,R (7, 4) = 8, and so on...defined for every cell)

Remember - Output is policy ©r — what action robot should take at each state

Solved using dynamic programming,

e.g., Bellman update equations

Example of MDP as RL Model:

Gridworld

Objective: Robot has to reach G from its start location (green) :
MDP formulation: L
S: all the cells of the grid, e.g., (0, 0) (O, 1)...

i A: North, South, East, West (red arrows on bottom right) @ .__,?(__,
L\]/Sen T. e.qg., if robot does action N at (1, 1) it reaches (1, 2) !
inpu’r Ta Written as a function: T((1, 1,), N) = (1, 2) 8x8 gl’ld world

RL T could be probabilistic too: Doing N at a cell takes the robot one cell north 90% of the time, but

takes it one cell east or west 5% of the fime resp.

Written as: T ((1, 1), N, (1,2))=0.9;T((1,1),N, (0, 1))=0.05T((1,1).N, (2, 1)) =0.05...for each cell and for
each action

R: e.g., +10 forreaching a cell 1-hop from G, +8 for cells 2-hops from G and so on (e.g., R(6,
5)=10,R (7, 4) = 8, and so on...defined for every cell)

Remember - Output is policy ©r — what action robot should take at each state

Solved using dynamic programming + Q-learning or DQN

(value function based), REINFORCE, A3C, PPO (policy based) |

Value Based
Method for RL

Q-Learning

Recallinput tfo RLis (S, A, ¥, R) and output is policy « (0,0), N 0.2
Recall Tis called the model of the problem
| i | 0,0, 02
Q-learning does not try to re-construct T (some other RL algorithms do) 5
Q-learning is a model-free RL algorithm (0.0). 0.
(Ol O)/ W 0.2

Main idea of Q-learning:
Build a table called g-table (1, 1), N 0.6
Table is indexed by S X A: cross product of state and action spaces of problem

E.g., for the 8 x 8 grid world with a deterministic robot (one that moves only north when it does N) (256 TOWS)

64 states (cells) and 4 actions of the robot — gives 64 * 4 = 256 entries of Q-table Q-table of grid world

Content of g-table gives the value of each state, action pair (initialized to reward of each showing Q-values
state) initialized to (example)
reward of each state

Main operation in Q-learning: Update the Q-table by letting the agent visit different states of

the problem and taking different actions at each state

Called exploration

Takes the form of state-action sequence s,, a,, S,, Q,, ..., S, Of

At state s, tfake action a, which gets the agent to state s,; take action a, in s, which takes agent to

state s; and so on

Sequence is called an episode or a trial or a sample

Each (s, ;) pairinside sequence is called a step
At each step, update the Q(s, a) value of the state agent is in

Using a Q-update function, given by AQ(S;,A;) = a(R;, 1 vm§XQ(5f+1,0)— Q(S;,A))
Repeat for multiple episodes

Stopping criterion of Q-learning algo: When Q(s, a) values inside the Q-table are not
changing (significantly) over successive episodes - called convergence

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,) =0

Repeat (for each episode): (0.0).N 0.2 (001N Reil2
Initialize S (0,0),S 0.2 (0,0),S 0.005
Repeat (for each step of episode):

Choose A from S using policy derived from Q (e.g., e-greedy) (0.0).E 02 (0.0).E 087
Take action A, observe R, S’ (0,0),W 0.2 (0,0), W 0.005

Q(S, A) + Q(S, A) + a[R +ymax, Q(S', a) - Q(S, A)]

@)y

— e 4—
!

For our grid world
example, a trial would
be a path that the
robot takes; the Q-
table would be
updated by letting
the robot explore
different paths inside
the grid world

S § ’ (1,1),N 06 (1,1),N 06
until S is terminal

Pseudo-code for Q-learning algorithm - ,
Initial Q-table Final Q-table

Replaces the
Policy

Deep Q-learning

DQN Objective

Conventional Q-learning suitable for
Features are handcrafted
Fully observable, low dimension state spaces

DQN allows Q-learning to handle high dimensional sensor inputs

Q(s.a) function (action-value function) can be estimated with a
function approximator parameter Q(s, a; 6)

DQN Idea: Function approximator implemented as deep neural
network called Q-network

Neural Network-based Function

Approximartor Issues

Neural network is a non-linear function ~

4 Solutions

Issues with approximating Q() using non-

linear function: :
o Experience Replay

Correlations in sequence of observations SairclErEEs evEr dele
Small updates to Q() could significantly Removes correlations in observation
change policy and therefore, the data sequences

distribution _ Smooths over changes in data distribution

Correlatfions between Q and target Iterative update
valuesr + ymax, Q(s, Q) Reduces correlafions between Q-values

and target value

DQN: Experience Replay

The state is a sequence of actions and observations s, = x;, d;, X,, ..., Qi 4,
X

e, = (s;, Oy 1y, Si4q), Ccalled experience
D=e,, ..., e, cdledreplay memory

Difficult to give the neural network a sequence of arbitrary length as input

Use fixed length representation of sequence/history produced by a function
@(sy)

DQN Architecture

Input: 84 X 84 X 4

Conv layer 1: 32 filters, 8 X 8, stride = 4

Activation layer: RelLU

Conv layer 2: 64 filters, 8 X 8, stride = 2

Activation layer: RelLU

Conv layer 3: 64 filters, 3 X 3, stride = 1

Activation layer: RelLU

Fully connected layer, 512 RelLUs

Output layer: Fully connected, no. of outputs = no. of actions

Convglution Convglution Fully ccvmnected Fully cgnnected

=
=]
3
=
[
=1

L]
o e 000000 0 ¢
-
/ -

/e :
/] ®

. ,f L]

/] ¢

o/ e ./

°/ ® o/ «+0

R+O

Figure 1 | Schematic illustration of the convolutional neural network. The symbolizes sliding of each filter across input image) and two fully connected
details of the architecture are explained in the Methods. The input to the neural layers with a single output for each valid action. Each hidden layer is followed
network consists of an 84 X 84 X 4 image produced by the preprocessing by a rectifier nonlinearity (that is, max(0.x)).

map ¢, followed by three convolutional layers (note: snaking blue line

Q-Network Training

AQ(St,At) = (I_(Rt+1 + Ym2XQ(Sf+1la)_ Q(SpAt))
O.: set of network weights in iteration i

Sample random set of experiences uniformly at random from D (replay
memory), called mini-batch

2
(r+ 7 max 0G',d' 0.7)— Qls,a; {)j))

Similar to Q-learning update rule but: Li(0:) =Esar.s)~u)

Use mini-batch stochastic gradient updates

Vo L(0;) =Esars l(r—i— 7 max Q(s’,a’; 0) —Q(s,a; (J,v)) Vo, O(s,a; 0;)

Calculate gradient of loss function, L

The gradient of the loss function for a given iterafion with respect to the parameter 6;is « 6:: weights of target network

the difference between the target value and the actual value is multiplied by the « 0: weights of Q-network
gradient of the Q function approximator Q(s, a; 8) with respect to that specific « Target network weights are
parameter updated (copied from Q
. . . network weights) every C
Use the gradient of the loss function to update the Q function steps (iterative update)

approximator

DQN Training Algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ¢} with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢ = ¢(s)
fort=1,7Tdo
With probability e select a random action a,
otherwise select a; = max, @*(¢(s,),a;0)
Execute action a, in emulator and observe reward r; and image x;
Set 8441 = 8¢, a4, Ty and preprocess ¢y = O(8¢41)
Store transition (¢, a,, 7y, @p41) in D
Sample random minibatch of transitions (¢;, a;,r;, ;) from D
Set y; = { frJ | , for terminal q_f:d.,-}l |
ri + vy maxe Q(¢j41,a";0) for non-terminal ¢;
Perform a gradient descent step on (y; — Q(¢;, a;;6))° according to equaﬂﬂn@
end for
end for

Video Pinball 7|
Boxing |

DQN Performance ==

Atlantis |
° Crazy Climber |
Gopher
Comparison e
MNamea This Game
Kirull |
Assault |
Foad Runner |
Kangaroo
M M M James Bond
For playing different Atari games Tena
Pong
Space Invaders |
Beam Rider |
Tutankham |
Kung-Fu Master
Freeway |
Timea Pilat |
Enduro |
Fishing Derby |
Up and Down |
lca Hockey
Q*bert |
HER.O.
Astarix |
Battls Zone |
Wizard of War |
Chopper Command
Centipads |
Bank Heist]
River Raid |
Fawxon |
Amidar |
Alian]
Ventura

|

At human-level or above
Balow human-lavel

Seaquest |
Double Dunk
Bowiing |
Ms. Pac-Man
Asteroids | s
Frostbite |[hew
o i oo |
Private Eya hax .
Montezuma's Revenge |[es
B T T T T lF t} T !
100 200 300 400 500 600 1,000 4 500%

-y

¢ -

Distribution A - Approved for Public Release; Distribution Unlimited

Two Main Concepts that make DQN work

well

Experience buffer: stores the agent’s data so that it can be randomly
sampled from different fime-steps

Requires more memory and computation per real inferaction than online updates

Requires off-policy learning algorithms that can update from data generated by an
older policy

lterative Update: Aggregating over memory reduces non-stationarity
and de-correlates updates but limits methods to off-policy RL algorithms

DQN Resources

DQN/Deepmind

Dopamine - Google Tensorflow Deep RL framework

https://deepmind.com/research/dqn/
https://github.com/google/dopamine/tree/master/docs#downloads

Additional Resource

R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT Press,
2018. (open source pdf:

)
Slides: Richard Suttons RL Tutorial at NIPS 2015

Video Tutorial on RL, Q-learning ~1 hr

Video DeepMind Course on RL (10 lectures, 1.5 hrs each)

http://www.incompleteideas.net/book/the-book-2nd.html
http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-tutorial.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT

8 weeks of research internships high school students to participate at Department of
Navy Laboratories including NRL

Maijor criteria:
Completed Grade 9
Graduating seniors can apply
Must be 16 years or older at fime of application
U S Citizenship (for NRL)

NRL research areas: Al/ML, computer science, engineering, space sciences, radar,
remote sensing, plasma physics, chemistry, bio-sciences, material sciences, acoustics

Application deadline: November 30, 2020
Website:

https://seap.asee.org/

Policy Based
Methods for RL

Why Policy Basede

Value-based RL does not work in continuous spaces
Recall:
Policy m is a mapping from the state space S to the action space A (of a problem), i.e., ©:S —-A
Policy must maximize the reward that the agent gets (from solving the problem)
Value-based RL
nis represented in the form of a table (works for discrete state, action spaces)
Policy-based RL
nis represented in the form of (continuous) function parameterized by parameter 6
J(0): performance measure of the policy parameterized by 6

Requirement: J(6) must be continuous and differentiable,

A,J(0) represents the derivative of J(6) w.r.t. 6

Policy Gradient Algorithm

Three steps for policy gradient algorithm, run iteraftively:

Generate samples with current policy (initial policy: random)

fit a model to
F estimate return
generate

samples (i.e.
run the policy)

‘ improve the

policy

Determine the expected rewards from samples

Update policy parameter

fit a model to
estimate return

generate
samples (i.e.
run the policy)

improve the
policy

ll

Trial (also called trajectory)

Sequence of state-action pairs executed by the agent while following policy
parameterized by 6

Denoted by s,, a;, S, Oy, ..., S1, OF
Probability of selecting a trial denoted by py(s;, ;. Sy, Os...., S;, Of), or, in short as my(t)
Let us evaluate this probability (in terms of values available from the model)
Consider a two-sequence trial (s;, a;, S,, O,)
Probabillity of doing trial (s;, a,, s,, Q,), i.e., Py(S;, Ay, Sy Q) iS: /
Prob. of starting in state s, P(s) Comes from
Prob. of choosing action a, in state s, (| sy) current policy

Ty (INpUt)

Prob. of reaching state s, by doing action a,in state s, P(s,]s;, a;)

Prob. of choosing action a,in state s,

Po(S1, Ay, S, Qo) = P(Sy) e (1]5y) OIS 18y, Oy) g (s] Sy)

Objective of RL with Policy-based Method

Extend trial by one more step: (s;, Q;, S5, Ay, S5, O3)

. fit a model to
cor 0l (5, 0, 55 g

Po(S1, A1, S0, Op) = P(Sy) T (A1]57) P(S2 151, A1) 7e (O3] S)) generate

samples (i.e.
run the policy)

‘ improve the
Po(S1, Q. Sp, Ay, S, A3) = P(Sy) e (A1 [51) P(S2 15y, Oy) e (A] S2) P(Sz]52 @

We can continue doing this fill step T (and write the resulting expression in
closed form) to get:

For trial (s,, a;, Sy, Ay, S5, O3):

1
Prob. of a frial under policy 7, [KEAERS R CY [mo(addsi)p(ser s ar)
' =1 Find policy parameter 0
o (T) —_
that maximizes the reward from frials
Goal of RL * = E_ .
- — w LTepe(7) ! averaged over trials drawn as per the

‘\¥\ trials’ probabilities

fit a model to
F estimate return
generate

samples (i.e.
run the policy)

: - Recall previous slide: J(0): performance
improve the 0* = = arg max E’T'Wp{,l Z r St: at : 1
policy measure of the policy parameterized by 6

J(9)

« Next we slightly simplify J(6)so that we can calculate it from the trials or samples
« |If there were N trials or samples, we could do this averaging over the N trials
« Note:iisindex for a frial, T is index for step inside a trial

ZZT‘ Si,ts A1)

J(@) - E'rwpo('r) !Z St, at

t
* Next, find the derivative of J(6) w.r.t. &

Vod(0) = /VQ?TQ(’T)T(T)d’T = fﬂg;(’i")Vf} log o (7)r(7)dr = ETN,,T&(TJ[VQ log o (7)1 ()]

Vg?l‘g(‘r)
mo(T)

mo(T)Vo log mo(1) = my(7) = Vomo(T)

Evaluating the policy gradient

1
recall: J(0) = Erp,(r) [Z r(sy,ag) | ~ N Z Z?"(Si,t, ;)
Pt

2

T (T
VQJ(IQ) 'T"‘V'?TH(T !(Z Vo IDg wg(at|st]) E'P(St,ﬂt))]

t=1 t=1 fit a model to

estimate return

i=1 \t=1 t=1

1 N T T
Vo (0) ~ N 2 (Z Vg log W&(aé,t|5i,t)) (Z T(Si,t;ai,t))

generate samples
(i.e. run the policy)

REINFORCE algorithm:
1. sample {7*} from mg(at|s;) (run the policy) '
2. VoJ(0) = 32, (32, Vologm(atfst)) (32, r(st. at))

3.0+ 0+ aVyJ(0)

0« 0+ aVeJ(0)

improve the policy

Distribution A - Approved for Public Release; Distribution Unlimited

REINFORCE Algorithm Pseudocode

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization w(als,8),Va € A,s € 8,0 € R"
Initialize policy weights 6
Repeat forever:
Generate an episode Sy, Ag, Ry,...,S7-1,Ar-1, Ry, following (-|-,0)
For each step of the episode t = 0,...,7 — 1:
Gy + return from step ¢
0« 0+ a'y@vg log m(A;|S;, 6)

Note that te 2 r(s, a,) termis replaced by G;in the last two lines of the
pseudocode

VoJ (0 2 <Z Vo log ma(a ¢lsi.c)

Actor Crific
Learning

Actor-Critic Learning

Methods that learn approximations to both policy and value functions

Critic does value update portion

Actor does policy update portion

In simplest form:

Suppose within a trial action a; is selected at state s; giving next state as s;,; and
reward r,,;

Critic does a value update using above values in equation: & = r1 + 9V (si1) — V(si)

Actor does a policy update using critic's update in equation: p(se, ar) < p(se, ar) + 56y,

oo

0« 0+ aVyJ(0)

Variants of Actor-Critic Algorithm

Recall that we update the policy (actor part) using gradient descent on
the performance measure J(0)

Derivative given by product of derivative of policy = (w. r. 1. policy parameter
0)and the cumulative value term

Different value terms given different algorithms

VoJ(0) = Er, [Vologme(s,a)G,] REINFORCE (Recall G, =5r(s, ay))
=E,, [Vologmg(s,a) Q" (s, a)] Q Actor-Critic (yses Q-value)
=E,, [Vologm(s,a) A¥(s,a)] Advantage Actor-Critic (A%(s, a): advantage function)
=Er, [Volog ms(s, a) 4] TD Actor-Critic (uses TD value))
Advantage actor critic 5y = Tyar + 4V (500a) — VI(81)

Single threaded (one worker): A2C

Multiple threads (workers) running in parallel working on different parts of input feature vector —
called Asynchronous A2C or A3C

Pseudo-code of Q-Actor Critic

Algorithm 1 Q Actor Critic
Initialize parameters s, 0, w and learning rates «pg, ,; sample a ~ mg(als).
fort=1...1: do
Sample reward r; ~ R(s,a) and next state s’ ~ P(s'|s,a)
Then sample the next action a’ ~ mg(a’|s’)
Update the policy parameters: 6 < 0+ agQ..(s.a)Vg log mg(als); Compute
the correction (TD error) for action-value at time t:
0t =1t +YQuw(s',a') — Qu(s,a)
and use it to update the parameters of (Q function:
W — W+ Ay Ve Qu(s, a)
Move to a < @’ and s + &
end for

Pseudo-code of TD Actor Crific

On-policy method

. . Input: a differentiable policy parameterization w(a|s,8),Va € A,s € 8,0 € R"
The STOTG‘VO'UG fUﬂCTIOﬂ U deTe I’U|e IS Input: a differentiable state-value parameterization 9(s,w),Vs € 8, w € R™
Parameters: step sizesa > 0, 83> 0
the TD(0) update rule
Initialize policy weights @ and state-value weights w
Repeat forever:

The policy function update rule is Initialize § (first state of episode)
I+1
Shown below While S is not terminal:
e A~ n(|S,0)
For n-step Actor-Crific, simply replace Take action 4, observe S', R
1 . § +— R+ vo(S",w) — 9(S,w) (if S’ is terminal, then 9(S’,w) = 0)
G, with G;n) W W+ B6V, (S, w)
0+« 0+ aldVglogm(Al|S,0)
I ~I
S+« 9

i) _ p(5,.wey) TT(AS00)
0111 =6, +a (Gl v(St,W)) w(A¢|St, 0)
VgTr(At |Sl ’ o)

m(A¢|S:, 0) ’

=60, +a (RH-I + y0(St41,W) — f’(Sc,W))

Two Policy Gradient Algorithms (Overview)

Probabilistic Policy Optimization (PPO)
Trust-Region Policy Optimization (TRPO)
Main problem addressed:

As trials are being done, the next state might end up in a low reward state
(falling off the side of a cliff while climbing if)

Can be fixed by adjusting step size

PPO and TRPO give methods to calculate the step size so that the states
explored during a trial lead to improved rewards

Non-technical overview of PPO:

https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12

Resources

R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT
Press, 2018. (open source pdf:

)

Online articles with github code:
REINFORCE:

Actor Critic Learning (A2C):

Deep RL course at UC Berkeley (videos and lecture slides)

http://www.incompleteideas.net/book/the-book-2nd.html
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html

