
Introduction and Recent

Advances in Deep

Reinforcement Learning
DR. RAJ DASGUPTA

NAVAL RESEARCH LABORATORY, WASHINGTON D. C.

EMAIL: RAJ.DASGUPTA@NRL.NAVY.MIL

TJHSST AI/ML CLUB SEMINAR SERIES

Distribution A - Approved for Public Release; Distribution Unlimited

1

mailto:raj.Dasgupta@nrl.navy.mil

Outline

 Review of Reinforcement Learning (RL)

 Action-Value Methods

 Q-learning

 Deep Q-learning

 Policy Based Methods

 REINFORCE

 Actor-Critic Learning

 A2C (Advantage Actor-Critic) and A3C (Asynchronous A2C) Learning algorithm

 Proximal Region Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO) algorithm

 Background Required:

 Convolutional Neural Network (CNN) – for deep RL

 Markov Decision Processes (MDP) – for mathematical framework underlying RL

Distribution A - Approved for Public Release; Distribution Unlimited

2

Reinforcement Learning

 Recall: Supervised (and unsupervised) learning algorithms learn a

hypothesis that is consistent with the distribution of data used to train the

algorithm

 Reinforcement learning (RL) uses a reward function to learn a policy

 Policy: mapping from state to action – what to do in which situation

 Policy must maximize the reward that the agent gets (from solving the problem)

Distribution A - Approved for Public Release; Distribution Unlimited

3

RL Framework

 Representation of the problem being solved by the RL algo

 Mostly represented as a stochastic process called Markov Decision Process (MDP)

 MDP has 4 attributes: (S, A, T, R)

 S: State space: what are the states of the problem

 A: Action space: what are the actions that the agent can take

 T: Transition Function, also called model of the problem: if the agent takes a certain action
at a certain state, what next state does it end up in ?

 R: Reward Function: what is the reward that the agent gets when it reaches a state?

 MDP output is a policy, denoted by p

 p is a mapping from state space to action space: what (is the best) action that the agent
should take for every state in S

Distribution A - Approved for Public Release; Distribution Unlimited

4

Example of MDP:

Gridworld

 Objective: Robot has to reach G from its start location (green)

 MDP formulation:

 S: all the cells of the grid, e.g., (0, 0) (0, 1)…

 A: North, South, East, West (red arrows on bottom right)

 T: e.g., if robot does action N at (1, 1) it reaches (1, 2)

 Written as a function: T((1, 1,), N) = (1, 2)

 T could be probabilistic too: Doing N at a cell takes the robot one cell north 90% of the time, but
takes it one cell east or west 5% of the time resp.

 Written as: T ((1, 1), N, (1, 2)) = 0.9; T ((1, 1), N, (0, 1)) = 0.05; T ((1, 1), N, (2, 1)) = 0.05…for each cell and for
each action

 R: e.g., +10 for reaching a cell 1-hop from G, +8 for cells 2-hops from G and so on (e.g., R(6,
5) = 10, R (7, 4) = 8, and so on…defined for every cell)

 Remember - Output is policy p – what action robot should take at each state

Given

as

input in

MDP

Solved using dynamic programming,

e.g., Bellman update equations
Distribution A - Approved for Public Release; Distribution Unlimited

5

8 x 8 grid world

Example of MDP as RL Model:

Gridworld

 Objective: Robot has to reach G from its start location (green)

 MDP formulation:

 S: all the cells of the grid, e.g., (0, 0) (0, 1)…

 A: North, South, East, West (red arrows on bottom right)

 T: e.g., if robot does action N at (1, 1) it reaches (1, 2)

 Written as a function: T((1, 1,), N) = (1, 2)

 T could be probabilistic too: Doing N at a cell takes the robot one cell north 90% of the time, but
takes it one cell east or west 5% of the time resp.

 Written as: T ((1, 1), N, (1, 2)) = 0.9; T ((1, 1), N, (0, 1)) = 0.05; T ((1, 1), N, (2, 1)) = 0.05…for each cell and for
each action

 R: e.g., +10 for reaching a cell 1-hop from G, +8 for cells 2-hops from G and so on (e.g., R(6,
5) = 10, R (7, 4) = 8, and so on…defined for every cell)

 Remember - Output is policy p – what action robot should take at each state

Given

as

input in

RL

Solved using dynamic programming + Q-learning or DQN

(value function based), REINFORCE, A3C, PPO (policy based)

X

8 x 8 grid world

Distribution A - Approved for Public Release; Distribution Unlimited

6

Value Based

Method for RL
Q-LEARNING

Distribution A - Approved for Public Release; Distribution Unlimited

7

Q-Learning

 Recall input to RL is (S, A, T, R) and output is policy p

 Recall T is called the model of the problem

 Q-learning does not try to re-construct T (some other RL algorithms do)

 Q-learning is a model-free RL algorithm

 Main idea of Q-learning:

 Build a table called q-table

 Table is indexed by S X A: cross product of state and action spaces of problem

 E.g., for the 8 x 8 grid world with a deterministic robot (one that moves only north when it does N)

 64 states (cells) and 4 actions of the robot – gives 64 * 4 = 256 entries of Q-table

 Content of q-table gives the value of each state, action pair (initialized to reward of each
state)

X
Index Q

(0, 0), N 0.2

(0, 0), S 0.2

(0, 0), E 0.2

(0, 0), W 0.2

(1, 1), N 0.6

… …

(256 rows)

Q-table of grid world

showing Q-values

initialized to (example)

reward of each state

Distribution A - Approved for Public Release; Distribution Unlimited

8

 Main operation in Q-learning: Update the Q-table by letting the agent visit different states of
the problem and taking different actions at each state

 Called exploration

 Takes the form of state-action sequence s1, a1, s2, a2, …, sT, aT

 At state s1 take action a1 which gets the agent to state s2; take action a2 in s2 which takes agent to
state s3 and so on

 Sequence is called an episode or a trial or a sample

 Each (si, ai) pair inside sequence is called a step

 At each step, update the Q(s, a) value of the state agent is in

 Using a Q-update function, given by

 Repeat for multiple episodes

 Stopping criterion of Q-learning algo: When Q(s, a) values inside the Q-table are not
changing (significantly) over successive episodes - called convergence

Pseudo-code for Q-learning algorithm

For our grid world

example, a trial would

be a path that the

robot takes; the Q-

table would be

updated by letting

the robot explore

different paths inside

the grid world

Index Q

(0, 0), N 0.2

(0, 0), S 0.2

(0, 0), E 0.2

(0, 0), W 0.2

(1, 1), N 0.6

… …

Index Q

(0, 0), N 0.12

(0, 0), S 0.005

(0, 0), E 0.87

(0, 0), W 0.005

(1, 1), N 0.6

… …

Initial Q-table Final Q-table

Replaces the
Policy

Distribution A - Approved for Public Release; Distribution Unlimited

9

Deep Q-learning DEEP Q-NETWORKS

Distribution A - Approved for Public Release; Distribution Unlimited

10

DQN Objective

 Conventional Q-learning suitable for

 Features are handcrafted

 Fully observable, low dimension state spaces

 DQN allows Q-learning to handle high dimensional sensor inputs

 Q(s,a) function (action-value function) can be estimated with a

function approximator parameter Q(s, a; θ)

 DQN Idea: Function approximator implemented as deep neural

network called Q-network

Distribution A - Approved for Public Release; Distribution Unlimited

11

Neural Network-based Function

Approximator Issues

 Neural network is a non-linear function

 Issues with approximating Q() using non-

linear function:

1. Correlations in sequence of observations

2. Small updates to Q() could significantly

change policy and therefore, the data

distribution

3. Correlations between Q and target

values r + g maxa Q(s, a)

Iterative update
• Reduces correlations between Q-values

and target value

Experience Replay
• Randomizes over data

• Removes correlations in observation

sequences

• Smooths over changes in data distribution

Solutions

Distribution A - Approved for Public Release; Distribution Unlimited

12

DQN: Experience Replay

 The state is a sequence of actions and observations st = x1, a1, x2, …, at-1,

xt

 et = (st, at, rt, st+1), called experience

 D = e1, ..., en, called replay memory

 Difficult to give the neural network a sequence of arbitrary length as input

 Use fixed length representation of sequence/history produced by a function
ϕ(st)

Distribution A - Approved for Public Release; Distribution Unlimited

13

DQN Architecture

 Input: 84 X 84 X 4

 Conv layer 1: 32 filters, 8 X 8, stride = 4

 Activation layer: ReLU

 Conv layer 2: 64 filters, 8 X 8, stride = 2

 Activation layer: ReLU

 Conv layer 3: 64 filters, 3 X 3, stride = 1

 Activation layer: ReLU

 Fully connected layer, 512 ReLUs

 Output layer: Fully connected, no. of outputs = no. of actions

Distribution A - Approved for Public Release; Distribution Unlimited

14

Distribution A - Approved for Public Release; Distribution Unlimited

15

Q-Network Training

 θi: set of network weights in iteration i

 Sample random set of experiences uniformly at random from D (replay
memory), called mini-batch

 Similar to Q-learning update rule but:

 Use mini-batch stochastic gradient updates

 Calculate gradient of loss function, L

 The gradient of the loss function for a given iteration with respect to the parameter θi is
the difference between the target value and the actual value is multiplied by the
gradient of the Q function approximator Q(s, a; θ) with respect to that specific
parameter

 Use the gradient of the loss function to update the Q function
approximator

• qi
-: weights of target network

• qi: weights of Q-network

• Target network weights are

updated (copied from Q

network weights) every C

steps (iterative update)

Distribution A - Approved for Public Release; Distribution Unlimited

16

DQN Training Algorithm

Distribution A - Approved for Public Release; Distribution Unlimited

17

DQN Performance

Comparison

For playing different Atari games

Distribution A - Approved for Public Release; Distribution Unlimited

18

Two Main Concepts that make DQN work

well

 Experience buffer: stores the agent’s data so that it can be randomly

sampled from different time-steps

 Requires more memory and computation per real interaction than online updates

 Requires off-policy learning algorithms that can update from data generated by an

older policy

 Iterative Update: Aggregating over memory reduces non-stationarity

and de-correlates updates but limits methods to off-policy RL algorithms

Distribution A - Approved for Public Release; Distribution Unlimited

19

DQN Resources

 DQN/Deepmind https://deepmind.com/research/dqn/

 Dopamine - Google Tensorflow Deep RL framework

https://github.com/google/dopamine/tree/master/docs#downloads

Distribution A - Approved for Public Release; Distribution Unlimited

20

https://deepmind.com/research/dqn/
https://github.com/google/dopamine/tree/master/docs#downloads

Additional Resource

 R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT Press,
2018. (open source pdf: http://www.incompleteideas.net/book/the-book-
2nd.html)

 Slides: Richard Suttons RL Tutorial at NIPS 2015
http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-
tutorial.pdf

 Video Tutorial on RL, Q-learning ~1 hr
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-
wCZcQn5IqyuWhBZ8fOxT

 Video DeepMind Course on RL (10 lectures, 1.5 hrs each)
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-
wCZcQn5IqyuWhBZ8fOxT

Distribution A - Approved for Public Release; Distribution Unlimited

21

http://www.incompleteideas.net/book/the-book-2nd.html
http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-tutorial.pdf
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-wCZcQn5IqyuWhBZ8fOxT

Distribution A - Approved for Public Release; Distribution Unlimited

22

 8 weeks of research internships high school students to participate at Department of

Navy Laboratories including NRL

 Major criteria:

 Completed Grade 9

 Graduating seniors can apply

 Must be 16 years or older at time of application

 U S Citizenship (for NRL)

 NRL research areas: AI/ML, computer science, engineering, space sciences, radar,

remote sensing, plasma physics, chemistry, bio-sciences, material sciences, acoustics

 Application deadline: November 30, 2020

 Website: https://seap.asee.org/

https://seap.asee.org/

Policy Based

Methods for RL

Distribution A - Approved for Public Release; Distribution Unlimited

23

Why Policy Based?

 Value-based RL does not work in continuous spaces

 Recall:

 Policy p is a mapping from the state space S to the action space A (of a problem), i.e., p : S →A

 Policy must maximize the reward that the agent gets (from solving the problem)

 Value-based RL

 p is represented in the form of a table (works for discrete state, action spaces)

 Policy-based RL

 p is represented in the form of (continuous) function parameterized by parameter q

 J(q): performance measure of the policy parameterized by q

 Requirement: J(q) must be continuous and differentiable,

 ΔqJ(q) represents the derivative of J(q) w.r.t. q

Distribution A - Approved for Public Release; Distribution Unlimited

24

Policy Gradient Algorithm

 Three steps for policy gradient algorithm, run iteratively:

 Generate samples with current policy (initial policy: random)

 Determine the expected rewards from samples

 Update policy parameter

Distribution A - Approved for Public Release; Distribution Unlimited

25

 Trial (also called trajectory)

 Sequence of state-action pairs executed by the agent while following policy
parameterized by q

 Denoted by s1, a1, s2, a2, …, sT, aT

 Probability of selecting a trial denoted by pq(s1, a1, s2, a2…., ST, aT), or, in short as pq(t)

 Let us evaluate this probability (in terms of values available from the model)

 Consider a two-sequence trial (s1, a1, s2, a2)

 Probability of doing trial (s1, a1, s2, a2), i.e., pq(s1, a1, s2, a2) is:

 Prob. of starting in state s1

 Prob. of choosing action a1 in state s1

 Prob. of reaching state s2 by doing action a2 in state s1

 Prob. of choosing action a2 in state s2

p(s1)

pq (a1|s1)
p(s2|s1, a1)

pq (a2|s2)

pq(s1, a1, s2, a2) = p(s1) pq (a1|s1) p(s2|s1, a1) pq (a2|s2)

Comes from state transition
model of problem (input)

Comes from
current policy

pq (input)

Distribution A - Approved for Public Release; Distribution Unlimited

26

Objective of RL with Policy-based Method

 Extend trial by one more step: (s1, a1, s2, a2, s3, a3)

 For trial (s1, a1, s2, a2):

 pq(s1, a1, s2, a2) = p(s1) pq (a1|s1) p(s2|s1, a1) pq (a2|s2)

 For trial (s1, a1, s2, a2, s3, a3):

 pq(s1, a1, s2, a2, s3, a3) = p(s1) pq (a1|s1) p(s2|s1, a1) pq (a2|s2) p(s3|s2, a2) pq (a3|s3)

 We can continue doing this till step T (and write the resulting expression in

closed form) to get:

Prob. of a trial under policy pq

Goal of RL

Find policy parameter q

that maximizes the reward from trials

averaged over trials drawn as per the

trials’ probabilities
Distribution A - Approved for Public Release; Distribution Unlimited

27

Recall previous slide: J(q): performance

measure of the policy parameterized by q

• Next we slightly simplify J(q)so that we can calculate it from the trials or samples

• If there were N trials or samples, we could do this averaging over the N trials

• Note: i is index for a trial, t is index for step inside a trial

Distribution A - Approved for Public Release; Distribution Unlimited

28

• Next, find the derivative of J(q) w. r. t. q:

Distribution A - Approved for Public Release; Distribution Unlimited

29

REINFORCE Algorithm Pseudocode

Distribution A - Approved for Public Release; Distribution Unlimited

30

Note that te St r(st, at) term is replaced by Gt in the last two lines of the

pseudocode

Gradient formula described in previous slides

Actor Critic

Learning

Distribution A - Approved for Public Release; Distribution Unlimited

31

Actor-Critic Learning

 Methods that learn approximations to both policy and value functions

 Critic does value update portion

 Actor does policy update portion

 In simplest form:

 Suppose within a trial action at is selected at state st giving next state as st+1 and

reward rt+1

 Critic does a value update using above values in equation:

 Actor does a policy update using critic’s update in equation:

Distribution A - Approved for Public Release; Distribution Unlimited

32

Note this update eq. is very
similar to Q-update. It is

called Temporal Difference
(TD) update

Similar to policy update eq.

Variants of Actor-Critic Algorithm

 Recall that we update the policy (actor part) using gradient descent on
the performance measure J(q)

 Derivative given by product of derivative of policy p (w. r. t. policy parameter
q)and the cumulative value term

 Different value terms given different algorithms

Distribution A - Approved for Public Release; Distribution Unlimited

33

 Advantage actor critic

 Single threaded (one worker): A2C

 Multiple threads (workers) running in parallel working on different parts of input feature vector –
called Asynchronous A2C or A3C

(Recall Gt = St r(st, at))

(uses TD value)

(uses Q-value)

(Aw(s, a): advantage function)

Pseudo-code of Q-Actor Critic

Distribution A - Approved for Public Release; Distribution Unlimited

34

Pseudo-code of TD Actor Critic

 On-policy method

 The state-value function update rule is

the TD(0) update rule

 The policy function update rule is

shown below.

 For n-step Actor-Critic, simply replace

Gt
(1) with Gt

(n)

Distribution A - Approved for Public Release; Distribution Unlimited

35

Two Policy Gradient Algorithms (Overview)

 Probabilistic Policy Optimization (PPO)

 Trust-Region Policy Optimization (TRPO)

 Main problem addressed:

 As trials are being done, the next state might end up in a low reward state
(falling off the side of a cliff while climbing it)

 Can be fixed by adjusting step size

 PPO and TRPO give methods to calculate the step size so that the states
explored during a trial lead to improved rewards

 Non-technical overview of PPO: https://medium.com/@jonathan_hui/rl-
proximal-policy-optimization-ppo-explained-77f014ec3f12

Distribution A - Approved for Public Release; Distribution Unlimited

36

https://medium.com/@jonathan_hui/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12

Resources

 R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT

Press, 2018. (open source pdf: http://www.incompleteideas.net/book/the-

book-2nd.html)

 Online articles with github code:

 REINFORCE: https://medium.com/@thechrisyoon/deriving-policy-gradients-

and-implementing-reinforce-f887949bd63

 Actor Critic Learning (A2C): https://towardsdatascience.com/understanding-

actor-critic-methods-931b97b6df3f

 Deep RL course at UC Berkeley (videos and lecture slides)

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html

Distribution A - Approved for Public Release; Distribution Unlimited

37

http://www.incompleteideas.net/book/the-book-2nd.html
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f
http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html

