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Outline

 Review of Reinforcement Learning (RL)

 Action-Value Methods

 Q-learning

 Deep Q-learning

 Policy Based Methods

 REINFORCE

 Actor-Critic Learning

 A2C (Advantage Actor-Critic) and A3C (Asynchronous A2C) Learning algorithm

 Proximal Region Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO) algorithm

 Background Required:

 Convolutional Neural Network (CNN) – for deep RL

 Markov Decision Processes (MDP) – for mathematical framework underlying RL
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Reinforcement Learning

 Recall: Supervised (and unsupervised) learning algorithms learn a 

hypothesis that is consistent with the distribution of data used to train the 

algorithm

 Reinforcement learning (RL) uses a reward function to learn a policy

 Policy: mapping from state to action – what to do in which situation

 Policy must maximize the reward that the agent gets (from solving the problem)
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RL Framework

 Representation of the problem being solved by the RL algo

 Mostly represented as a stochastic process called Markov Decision Process (MDP)

 MDP has 4 attributes: (S, A, T, R)

 S: State space: what are the states of the problem

 A: Action space: what are the actions that the agent can take

 T: Transition Function, also called model of the problem: if the agent takes a certain action 
at a certain state, what next state does it end up in ?

 R: Reward Function: what is the reward that the agent gets when it reaches a state?

 MDP output is a policy, denoted by p

 p is a mapping from state space to action space: what (is the best) action that the agent 
should take for every state in S
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Example of MDP:

Gridworld

 Objective: Robot has to reach G from its start location (green)

 MDP formulation:

 S: all the cells of the grid, e.g., (0, 0) (0, 1)…

 A: North, South, East, West (red arrows on bottom right)

 T: e.g., if robot does action N at (1, 1) it reaches (1, 2) 

 Written as a function: T( (1, 1,), N ) = (1, 2)

 T could be probabilistic too: Doing N at a cell takes the robot one cell north 90% of the time, but 
takes it one cell east or west 5% of the time resp.

 Written as: T ( (1, 1), N, (1, 2 ) ) = 0.9; T ( (1, 1), N, (0, 1) ) = 0.05; T ( (1, 1), N, (2, 1) ) = 0.05…for each cell and for 
each action

 R: e.g., +10 for reaching a cell 1-hop from G, +8 for cells 2-hops from G and so on (e.g., R(6, 
5) = 10, R (7, 4) = 8, and so on…defined for every cell)

 Remember - Output is policy p – what action robot should take at each state

Given 

as 

input in 

MDP

Solved using dynamic programming, 

e.g., Bellman update equations
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Example of MDP as RL Model: 

Gridworld

 Objective: Robot has to reach G from its start location (green)

 MDP formulation:

 S: all the cells of the grid, e.g., (0, 0) (0, 1)…

 A: North, South, East, West (red arrows on bottom right)

 T: e.g., if robot does action N at (1, 1) it reaches (1, 2) 

 Written as a function: T( (1, 1,), N ) = (1, 2)

 T could be probabilistic too: Doing N at a cell takes the robot one cell north 90% of the time, but 
takes it one cell east or west 5% of the time resp.

 Written as: T ( (1, 1), N, (1, 2 ) ) = 0.9; T ( (1, 1), N, (0, 1) ) = 0.05; T ( (1, 1), N, (2, 1) ) = 0.05…for each cell and for 
each action

 R: e.g., +10 for reaching a cell 1-hop from G, +8 for cells 2-hops from G and so on (e.g., R(6, 
5) = 10, R (7, 4) = 8, and so on…defined for every cell)

 Remember - Output is policy p – what action robot should take at each state

Given 

as 

input in 

RL

Solved using dynamic programming + Q-learning or DQN 

(value function based), REINFORCE, A3C, PPO (policy based)

X

8 x 8 grid world
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Value Based 

Method for RL
Q-LEARNING
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Q-Learning

 Recall input to RL is (S, A, T, R) and output is policy p

 Recall T is called the model of the problem

 Q-learning does not try to re-construct T (some other RL algorithms do)

 Q-learning is a model-free RL algorithm

 Main idea of Q-learning:

 Build a table called q-table

 Table is indexed by S X A: cross product of state and action spaces of problem

 E.g., for the  8 x 8 grid world with a deterministic robot (one that moves only north when it does N) 

 64 states (cells) and 4 actions of the robot – gives 64 * 4 = 256 entries of Q-table

 Content of q-table gives the value of each state, action pair (initialized to reward of each 
state)

X
Index Q

(0, 0), N 0.2

(0, 0), S 0.2

(0, 0), E 0.2

(0, 0), W 0.2

(1, 1), N 0.6

… …

(256 rows)

Q-table of grid world 

showing Q-values 

initialized to (example) 

reward of each state
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 Main operation in Q-learning: Update the Q-table by letting the agent visit different states of 
the problem and taking different actions at each state

 Called exploration

 Takes the form of state-action sequence s1, a1, s2, a2, …, sT, aT

 At state s1 take action a1 which gets the agent to state s2; take action a2 in s2 which takes agent to 
state s3 and so on

 Sequence is called an episode or a trial or a sample

 Each (si, ai) pair inside sequence is called a step

 At each step, update the Q(s, a) value of the state agent is in

 Using a Q-update function, given by

 Repeat for multiple episodes

 Stopping criterion of Q-learning algo: When Q(s, a) values inside the Q-table are not 
changing (significantly) over successive episodes - called convergence

Pseudo-code for Q-learning algorithm

For our grid world 

example, a trial would 

be a path that the 

robot takes; the Q-

table would be 

updated by letting 

the robot explore 

different paths inside 

the grid world

Index Q

(0, 0), N 0.2

(0, 0), S 0.2

(0, 0), E 0.2

(0, 0), W 0.2

(1, 1), N 0.6

… …

Index Q

(0, 0), N 0.12

(0, 0), S 0.005

(0, 0), E 0.87

(0, 0), W 0.005

(1, 1), N 0.6

… …

Initial Q-table Final Q-table

Replaces the 
Policy
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Deep Q-learning DEEP Q-NETWORKS
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DQN Objective

 Conventional Q-learning suitable for 

 Features are handcrafted

 Fully observable, low dimension state spaces

 DQN allows Q-learning to handle high dimensional sensor inputs

 Q(s,a) function (action-value function) can be estimated with a 

function approximator parameter Q(s, a; θ) 

 DQN Idea: Function approximator implemented as deep neural 

network called Q-network
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Neural Network-based Function 

Approximator Issues

 Neural network is a non-linear function

 Issues with approximating Q() using non-

linear function:

1. Correlations in sequence of observations

2. Small updates to Q() could significantly 

change policy and therefore, the data 

distribution

3. Correlations between Q and target 

values r + g maxa Q(s, a)

Iterative update
• Reduces correlations between Q-values 

and target value

Experience Replay
• Randomizes over data 

• Removes correlations in observation 

sequences

• Smooths over changes in data distribution

Solutions
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DQN: Experience Replay

 The state is a sequence of actions and observations st = x1, a1, x2, …, at-1, 

xt

 et = (st, at, rt, st+1), called experience

 D = e1, ..., en, called replay memory

 Difficult to give the neural network a sequence of arbitrary length as input

 Use fixed length representation of sequence/history produced by a function 
ϕ(st)
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DQN Architecture

 Input: 84 X 84 X 4

 Conv layer 1: 32 filters, 8 X 8, stride = 4

 Activation layer: ReLU

 Conv layer 2: 64 filters, 8 X 8, stride = 2

 Activation layer: ReLU

 Conv layer 3: 64 filters, 3 X 3, stride = 1

 Activation layer: ReLU

 Fully connected layer, 512 ReLUs

 Output layer: Fully connected, no. of outputs = no. of actions
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Q-Network Training

 θi: set of network weights in iteration i

 Sample random set of experiences uniformly at random from D (replay 
memory), called mini-batch

 Similar to Q-learning update rule but: 

 Use mini-batch stochastic gradient updates

 Calculate gradient of loss function, L

 The gradient of the loss function for a given iteration with respect to the parameter θi is 
the difference between the target value and the actual value is multiplied by the 
gradient of the Q function approximator Q(s, a; θ) with respect to that specific 
parameter

 Use the gradient of the loss function to update the Q function 
approximator

• qi
-: weights of target network

• qi: weights of Q-network

• Target network weights are 

updated (copied from Q 

network weights) every C 

steps (iterative update)
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DQN Training Algorithm
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DQN Performance 

Comparison

For playing different Atari games
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Two Main Concepts that make DQN work 

well

 Experience buffer: stores  the agent’s data so that it can be randomly 

sampled from different time-steps

 Requires more memory and computation per real interaction than online updates

 Requires off-policy learning algorithms that can update from data generated by an 

older policy

 Iterative Update: Aggregating over memory reduces non-stationarity 

and de-correlates updates but limits methods to off-policy RL algorithms
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DQN Resources

 DQN/Deepmind https://deepmind.com/research/dqn/

 Dopamine - Google Tensorflow Deep RL framework 

https://github.com/google/dopamine/tree/master/docs#downloads
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Additional Resource

 R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT Press, 
2018. (open source pdf: http://www.incompleteideas.net/book/the-book-
2nd.html)

 Slides: Richard Suttons RL Tutorial at NIPS 2015 
http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-
tutorial.pdf

 Video Tutorial on RL, Q-learning ~1 hr
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-
wCZcQn5IqyuWhBZ8fOxT

 Video DeepMind Course on RL (10 lectures, 1.5 hrs each) 
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PL7-jPKtc4r78-
wCZcQn5IqyuWhBZ8fOxT
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 8 weeks of research internships high school students to participate at Department of 

Navy Laboratories including NRL

 Major criteria: 

 Completed Grade 9

 Graduating seniors can apply

 Must be 16 years or older at time of application

 U S Citizenship (for NRL) 

 NRL research areas: AI/ML, computer science, engineering, space sciences, radar, 

remote sensing, plasma physics, chemistry, bio-sciences, material sciences, acoustics

 Application deadline: November 30, 2020

 Website: https://seap.asee.org/

https://seap.asee.org/


Policy Based 

Methods for RL
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Why Policy Based?

 Value-based RL does not work in continuous spaces

 Recall: 

 Policy p is a mapping from the state space S to the action space A (of a problem), i.e., p : S →A

 Policy must maximize the reward that the agent gets (from solving the problem)

 Value-based RL 

 p is represented in the form of a table (works for discrete state, action spaces)

 Policy-based RL

 p is represented in the form of (continuous) function parameterized by parameter q

 J(q): performance measure of the policy parameterized by q

 Requirement: J(q) must be continuous and differentiable, 

 ΔqJ(q) represents the derivative of J(q) w.r.t. q
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Policy Gradient Algorithm

 Three steps for policy gradient algorithm, run iteratively:

 Generate samples with current policy (initial policy: random)

 Determine the expected rewards from samples

 Update policy parameter
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 Trial (also called trajectory)

 Sequence of state-action pairs executed by the agent while following policy 
parameterized by q

 Denoted by s1, a1, s2, a2, …, sT, aT

 Probability of selecting a trial denoted by pq(s1, a1, s2, a2…., ST, aT), or, in short as pq(t)

 Let us evaluate this probability (in terms of values available from the model)

 Consider a two-sequence trial (s1, a1, s2, a2)

 Probability of doing trial (s1, a1, s2, a2), i.e., pq(s1, a1, s2, a2) is:

 Prob. of starting in state s1

 Prob. of choosing action a1 in state s1

 Prob. of reaching state s2 by doing action a2 in state s1 

 Prob. of choosing action a2 in state s2

p(s1)

pq (a1|s1)
p(s2|s1, a1)

pq (a2|s2)

pq(s1, a1, s2, a2) = p(s1) pq (a1|s1) p(s2|s1, a1) pq (a2|s2)

Comes from state transition 
model of problem (input)

Comes from 
current policy 

pq (input)
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Objective of RL with Policy-based Method

 Extend trial by one more step: (s1, a1, s2, a2, s3, a3)

 For trial (s1, a1, s2, a2): 

 pq(s1, a1, s2, a2) = p(s1) pq (a1|s1) p(s2|s1, a1) pq (a2|s2)

 For trial (s1, a1, s2, a2, s3, a3):

 pq(s1, a1, s2, a2, s3, a3) = p(s1) pq (a1|s1) p(s2|s1, a1) pq (a2|s2) p(s3|s2, a2) pq (a3|s3)

 We can continue doing this till step T (and write the resulting expression in 

closed form) to get: 

Prob. of a trial under policy pq

Goal of RL

Find policy parameter q

that maximizes the reward from trials

averaged over trials drawn as per the 

trials’ probabilities
Distribution A - Approved for Public Release; Distribution Unlimited
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Recall previous slide: J(q): performance 

measure of the policy parameterized by q

• Next we slightly simplify J(q)so that we can calculate it from the trials or samples

• If there were N trials or samples, we could do this averaging over the N trials

• Note: i is index for a trial, t is index for step inside a trial
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• Next, find the derivative of  J(q) w. r. t. q:
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REINFORCE Algorithm Pseudocode
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Note that te St r(st, at) term is replaced by Gt in the last two lines of the 

pseudocode

Gradient formula described in previous slides



Actor Critic 

Learning
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Actor-Critic Learning

 Methods that learn approximations to both policy and value functions

 Critic does value update portion

 Actor does policy update portion

 In simplest form:

 Suppose within a trial action at is selected at state st giving next state as st+1 and 

reward rt+1

 Critic does a value update using above values in equation:

 Actor does a policy update using critic’s update in equation:
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Note this update eq. is very 
similar to Q-update. It is 

called Temporal Difference 
(TD) update

Similar to policy update eq.



Variants of Actor-Critic Algorithm

 Recall that we update the policy (actor part) using gradient descent on 
the performance measure J(q)

 Derivative given by product of derivative of policy p (w. r. t. policy parameter 
q)and the cumulative value term

 Different value terms given different algorithms
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 Advantage actor critic 

 Single threaded (one worker): A2C

 Multiple threads (workers) running in parallel working on different parts of input feature vector –
called Asynchronous A2C or A3C

( Recall Gt = St r(st, at) )

( uses TD value)

( uses Q-value )

( Aw(s, a): advantage function)



Pseudo-code of Q-Actor Critic
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Pseudo-code of TD Actor Critic

 On-policy method

 The state-value function update rule is 

the TD(0) update rule

 The policy function update rule is 

shown below.

 For n-step Actor-Critic, simply replace 

Gt
(1) with Gt

(n)

Distribution A - Approved for Public Release; Distribution Unlimited
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Two Policy Gradient Algorithms (Overview)

 Probabilistic Policy Optimization (PPO)

 Trust-Region Policy Optimization (TRPO)

 Main problem addressed:

 As trials are being done, the next state might end up in a low reward state 
(falling off the side of a cliff while climbing it)

 Can be fixed by adjusting step size

 PPO and TRPO give methods to calculate the step size so that the states 
explored during a trial lead to improved rewards

 Non-technical overview of PPO: https://medium.com/@jonathan_hui/rl-
proximal-policy-optimization-ppo-explained-77f014ec3f12
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Resources

 R. Sutton and A. Barto, “Reinforcement Learning: An Introduction”, MIT 

Press, 2018. (open source pdf: http://www.incompleteideas.net/book/the-

book-2nd.html)

 Online articles with github code:

 REINFORCE: https://medium.com/@thechrisyoon/deriving-policy-gradients-

and-implementing-reinforce-f887949bd63

 Actor Critic Learning (A2C): https://towardsdatascience.com/understanding-

actor-critic-methods-931b97b6df3f

 Deep RL course at UC Berkeley (videos and lecture slides) 

http://rail.eecs.berkeley.edu/deeprlcourse-fa17/index.html
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