
NLP for Question Answering Systems

Tarushii Goel

April 2021

1 Introduction

Question-answering is a information retrieval task focused on giving the exact
answer to factoid questions (as opposed to a set of relevant articles, which is
what google does). For example, you could pose the question, ”how many sides
are in a triangle?” and the model would output ”3”.

2 Overview

The most successful approaches to question-answering use NLP and the reader-
retriever system, so that is what we will look at.

Figure 1: Reader-Retriever system [2]

1



3 Retriever

There are many different machine learning and non-machine learning based
approaches to document retrieval. Almost all of them will focus on converting
the questions and documents in the corpus into vectors. These vectors encode
the information present in the document or question. When you want to retrieve
documents for a question you would:

1. Ensure that you have precomputed a document vector for each document
in the corpus of documents

2. Encode the question into a vector

3. Calculate the similarity between the question vector and each document
vector (through some vector similarity measure, such as the dot product)

4. Return the k (you can choose any k) documents with the highest similarity
score

The following sections highlight various ways you might approach encoding lan-
guage into vectors.

3.1 TF-IDF

TF-IDF stands for text-frequency inverse-document-frequency, which makes
sense because it computes exactly that. It treats every document as a bag
of word vector, which just means that the ordering of the words in the doc-
ument does not matter, only the frequency of the words does. [4] Here is how
you would calculate it:

Definitions
tf(t, d) = text frequency of term t in document d

idf(t, D) = inverse document frequency of term t in document corpus D
freq(t, d) = raw frequency of term t in document d

tf(t, d) = log(1 + freq(t, d))

idf(t,D) = log(
|D|

|{d ∈ D : t ∈ d}|
)

tfidf(t, d) = tf(t, d)× idf(t,D)

Note the difference between capital and lowercase d. Also notice that text fre-
quency is just the log normalization of the raw frequency. There are many
other ways of defining text frequency, such as term frequency or double normal-
ization, but log normalization has been found to work best.

An even more popular scoring function is BM25. It uses a very similar con-
cept to TF-IDF, just a different and more successful formula. If you would like
to learn more about it I invite you to read this (very reliable) Wikipedia article
[5].

2



3.2 Dense Passage Retrieval

The dense passage retriever (DPR) turns to BERT-based language models in-
stead to encode the documents and questions into vectors. The embedder mod-

Figure 2: Dense Passage Retriever Training [3]

els are trained by passing the question along with a positive context or a negative
context: positive contexts are the ones which contain the answer to the question
and therefore should have a high similarity score, while negative contexts do not
contain the answer and should have a low similarity score. When constructing
the data, positive contexts must be hand-labeled, but negative contexts can be
selected through various methods. One of those discussed in the original paper
uses BM25 to select ”hard” passages which do not contain the answer.

4 Reader

The reader is more like a run-of-the-mill BERT-based model, where your inputs
are the documents (which are also sometimes referred to as ”contexts”) and you
are training your model to output the answers to the questions.

4.1 BERT

BERT is a very popular architecture in NLP. It is semi-supervised and trained
on two tasks: masked word prediction, and sentence order prediction.

3



Figure 3: Usage of BERT [1]

Figure 4: BERT training [1]

References

[1] Jay Alammar. The illustrated bert, elmo, and co. (how nlp cracked transfer
learning). http://jalammar.github.io/illustrated-bert/.

4

http://jalammar.github.io/illustrated-bert/


[2] Melanie R. Beck. Building a qa system with bert on wikipedia.
https://qa.fastforwardlabs.com/pytorch/hugging%20face/

wikipedia/bert/transformers/2020/05/19/Getting_Started_with_

QA.html#2.-QA-dataset:-SQuAD.

[3] James Briggs. How to create an answer from a ques-
tion with dpr. https://towardsdatascience.com/

how-to-create-an-answer-from-a-question-with-dpr-d76e29cc5d60.

[4] Lilian Weng. How to build an open-domain question answer-
ing system? https://lilianweng.github.io/lil-log/2020/10/29/

open-domain-question-answering.html.

[5] Wikipedia. Okapi bm25. https://en.wikipedia.org/wiki/Okapi_BM25.

5

https://qa.fastforwardlabs.com/pytorch/hugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_with_QA.html#2.-QA-dataset:-SQuAD
https://qa.fastforwardlabs.com/pytorch/hugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_with_QA.html#2.-QA-dataset:-SQuAD
https://qa.fastforwardlabs.com/pytorch/hugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_with_QA.html#2.-QA-dataset:-SQuAD
https://towardsdatascience.com/how-to-create-an-answer-from-a-question-with-dpr-d76e29cc5d60
https://towardsdatascience.com/how-to-create-an-answer-from-a-question-with-dpr-d76e29cc5d60
https://lilianweng.github.io/lil-log/2020/10/29/open-domain-question-answering.html
https://lilianweng.github.io/lil-log/2020/10/29/open-domain-question-answering.html
https://en.wikipedia.org/wiki/Okapi_BM25

	Introduction
	Overview
	Retriever
	TF-IDF
	Dense Passage Retrieval

	Reader
	BERT


