
Self-Attention

Saahith Janapati

December 2020

1 Introduction

In this lecture, we will discuss the Self-Attention Mechanism. The different types of attention mechanisms
have taken the deep learning world by storm; Attention has been found to improve neural network perfor-
mance on a variety of tasks. Self-attention is at the heart of some of the latest NLP breakthroughs like
OpenAI’s GPT-3.

2 Word Embeddings

We will first briefly discuss the concept of word embeddings. As you know, neural networks operate on
vectors, not words. So, if we are doing some NLP task, we need to first convert the text of interest to a
vector representation. With word embeddings, we can replace every word in our text with some n-dimensional
vector. This n-dimensional vector, our embedding for the word, captures the semantic meaning of the word
in vector space. You could imagine that each dimension of the vector relates to some aspect of meaning like
in the picture below.

It’s unlikely that the every dimension will correlate exactly to some concept easily understood by humans,
but thinking about embeddings like this is helpful for building intuition.

If you’re curious about methods to generate embeddings like these, check out this past lecture on
Word2Vec, a popular algorithm for generating embeddings.

Using these embeddings, it becomes easy to calculate the similarity between two words. We can simply
take the dot product between two words, which is a measure of similarity of two vectors. (Think, when does
the dot product get maximized? It’s when the angle between the two vectors is 0 degrees.)

3 Self-Attention Mechanism

In this lecture, we will be discussing a specific type of attention mechanism called the self-attention mech-
anism. This mechanism is used to refine our word embeddings to also capture any contextual information

1

https://tjmachinelearning.com/lectures/1718/word2vec/word2vec.pdf


present in our sequence.
This diagram outlines the basic operations of the self-attention mechanism, which will go through step-

by-step.

We start off with some sequence of words and we generate the word embeddings for those words. The
embedding for the first word of our sequence is c1, the embedding for the second word is c2, and so on for
all N words of our sequence. As mentioned before, the goal of the self-attention network is to update the
embeddings for all the words to also take into account the contextual information present in our sequence
(how each word relates to the other words in the sentence).

To create the updated vector for word k, we first compute the dot product between ck and the embedding
for every word (including word k). Then for every position i in our sequence, using the dot product values,
we compute rk→i, as shown below using the softmax function to ensure the values are positive.

rk→i quantifies the relative similarity between word k and word i. The higher the value is, the more
similar the two words are.

As shown in the diagram above, we then use these r values to calculate a weighted sum of all the original
word emebddings to create a vector representation for word k, denoted by the symbol c̃k. This is formalized
in the equation below.

This entire process is repeated for every position k.

2



3.1 Terminology: Query, Value, Key

The paper that introduced self-attention (Attention is All You Need) used the terminology query, value, and
key to describe the various vectors involved in the self-attention network. They borrowed this terminology
from database retrieval systems. The query is the vector to be modified, the keys are the word embeddings
of all the words in the sequence, and the values are vectors that are weighted using the rk→i values. Under-
standing this terminology is important for understanding later concepts we may discuss, such as transformer
networks.

3.2 Modifications

3.2.1 Skip Connections

One modification that has been empirically found to improve performance of self-attention networks on a
variety of tasks is to add skip connections between the word embeddings and the outputs of our attention
network (the process described above) to preserve some of the original word meaning. This is shown in the
image below.

3



3.2.2 Positional Encodings

You may have noted that output vectors we generate using the self-attention mechanism are order-invariant
relative to the sequence. That is, a different order of the input sequence would lead to exact same output
vectors. But we know from experience that different ordering of words can lead to completely different
semantic meaning. To ensure that positional information is also captured in our output vectors, we introduce
the concept of positional encodings.

The vector we end up generating using this formula captures the positional information for each word.
We then simply add this signal to the word embeddings before passing them on to our attention network.
The attention network can then also make use of positions of words to generate final output vectors that
more accurately represent the sequence.

Check out this blog post that goes further into the theory about positional encoders.

4

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


4 The Attention-Based Sequence Encoder

We can put these two modifications together to create the Attention-Based Sequence Encoder. In addition
to the two modifications we have already discussed, we also add a feedforward network (the weights of which
are trainable) that each output vector is pushed through, along with some normalization layers. The end
product is depicted in the following diagram.

5 Applications of Self-Attention

Although self-attention is perhaps most popular for being used in transformer networks, they are also widely
used in sentiment analysis and sequence modeling tasks. The specifics of these tasks are described below.

5.1 Sentiment Analysis

We can easily adapt the Attention-Based Sequence Encoder to create a sentiment analysis model as shown
below. Here, we simply average the output vectors generated by our Attention-Based Sequence Encoder and
perform a dot product with vector e, which is trainable. The probability of a positive sentiment can then
expressed using the equation in the following image.

5



5.2 Predicting Next Word

We can also adapt the Attention-Based Sequence Encoder to do next-word prediction. Here, we use the
softmax function along with the vectors e1, e2...eN for each possible word we could predict.

5.3 Transformers

Self-Attention blocks are also used extensively in transformer networks that have been at the heart of huge
advancements in NLP, like BERT and OpenAI GPT-3. Transformers can be used for language modeling
and translation tasks. We may have a lecture in the future on this topic.

6



6 Advantages of Using Self-Attention

One of the main advantages of using self-attention (rather than simply using word embeddings) for some
task is that the resulting output vectors make use of contextual information present in the sequence. This
can improve performance on tasks like sentiment analysis and predicting next words.

Another advantage of using self-attention for such tasks (as opposed to recurrent neural networks) is that
self-attention networks can make more efficient use of parallel computing power in the form of GPUs. In a
recurrent network, as you know, the inputs on one step are the outputs of another. On the other hand, with
self-attention networks, there is no inherent order in which the output vectors must be computed. Thus,
self-attention networks lend themselves well to GPU optimization.

7 Image Credits

All images were taken from lectures from the Duke Introduction to Machine Learning Course on Coursera.

7


	Introduction
	Word Embeddings
	Self-Attention Mechanism
	Terminology: Query, Value, Key
	Modifications
	Skip Connections
	Positional Encodings


	The Attention-Based Sequence Encoder
	Applications of Self-Attention
	Sentiment Analysis
	Predicting Next Word
	Transformers

	Advantages of Using Self-Attention
	Image Credits

