
Decision Trees

TJ Machine Learning∗

October 2020

1 Introduction

Decision trees are powerful and interpretable classifiers that mirror human de-
cisions unlike many other classifiers in supervised machine learning and are the
building blocks of random forests.

2 Definition

In essence, decision trees ask a series of true/false questions to narrow down
what class a particular sample belongs to. Here is an example of a decision tree
one might use in real life to decide upon an activity on a given day:

Figure 1: Real Life Decision Tree

Although this figure asks categorical variable-based questions, we can ask
numerical-based questions like “x1 < 5?” when the features are continuous. To
build our tree, we start at the root node and ask a question that splits the data

∗Adapted from lectures of Nikhil Sardana Vinay Bhaip

1

based on a feature such that the information gain is maximized. We continuously
do this for each node until the decision tree can classify all the training data.
(Note that in practice this leads to overfitting, so the tree is usually pruned, i.e.
a limit on the depth of the tree is set.)

2.1 Information Gain

We split each node on the feature and threshold that yields the most information
gain. The formula for information gain in a binary decision tree is as follows:

IG(Dp, f) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

Dp is the dataset of the parent node (the node which we are splitting), f
is the feature of the dataset which we are splitting on, Np is the total number
of samples in the parent node, Nleft and Nright are the number of samples in
the datasets of the left child node and right child node respectively, and I is
the impurity measure. A node is pure if all samples in its dataset belong to
the same class and is most impure when an equal number of samples belong to
each class. Essentially, information gain calculates the difference between the
impurity of the parent node and the impurity of the child nodes.

One commonly used measure of impurity is Gini impurity:

IG(i) = 1−
c∑

k=1

p(k|i)2

p(k|i) is the proportion of samples of class k to the total number of samples
in the dataset of the ith node. The impurity is maximized when the classes of
the node are perfectly mixed (for this example, consider a situation in which
there are 2 classes, meaning c = 2):

1−
c∑

k=1

0.52 = 0.5

An alternative impurity measure is entropy, which is defined as:

−
c∑

k=1

p(k|i)log2p(k|i)

Note that this function has a maximum of 1.0, not 0.5. In practice, Gini
impurity and entropy yield similar results, so it is more useful to test different
pruning cut-offs rather than to evaluate trees with different impurity criteria.

To decide on a split for a specific node, we will search for the feature and the
threshold (e.g. “petal length < 2.45 cm” for a flower classifier) that maximizes
the information gain. We can choose the best threshold for a feature from the
feature values in the training data or from the averages of every pair of feature
values in the training set. Another method is to select the best threshold from
the quartiles (20%, 40%, 60%, and 80% values) of the feature set.

Here is the pseudocode for determining the best split:

2

Algorithm 1 Best Split

1: IG← 0
2: for each feature do
3: for each threshold do
4: pot left, pot right← split(parent, feature, threshold)
5: pot ig← information gain(parent, pot left, pot right)
6: if pot ig > IG then
7: left← pot left
8: right← pot right
9: IG← pot ig

10: end if
11: end for
12: end for
13: return left, right

Algorithm 2 Split

1: function split(dataset, feature, threshold)
2: Initialize left and right lists
3: for each data point in dataset do
4: if feature of data point < threshold then
5: append data point to left
6: else
7: append data point to right
8: end if
9: end for

10: return left, right
11: end function

Algorithm 3 Gini Impurity

1: function split(dataset)
2: sum← 0
3: for each class label c do
4: ratio← (number of class labels c)/size of dataset
5: sum← sum + ratio ∗ ratio
6: end for
7: return 1 - sum
8: end function

3

3 Practice Problems

Consider the following dataset:

x1 x2 x3 y
0 1 0 -1
1 0 0 +1
0 1 1 +1
0 0 1 -1

1. What feature will we split on at the root of our decision tree, and what
will our information gain be from splitting on that feature using the Gini
impurity measure?

2. Build a decision tree using the dataset. What is the depth of the tree?

3. What will the decision tree classify a data point with the features x1 = 0,
x2 = 0, and x3 = 0 as (y = -1 or y = +1)?

x1 x2 y
0 0 +1
0 1 +1
1 0 +1
1 1 -1

It’s often helpful to visualize your data, even if it seems simple. Let the = +1
and ◦ = −1.

−1 1 2

−1

1

2

4. What will the information gain be after the first split in the above data set
with the Gini impurity measure? With entropy as the impurity measure?

5. What is the depth of the final decision tree?

4

4 Example

Decision trees are created by splitting on a threshold of a feature which results
in the most information gain, and recursively continuing this process for each
of the children.

Let us review Information Gain with an example. Remember, the equation
is:

IG(Dp, f) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

We will use the Gini Impurity measure, just like last time:

I(i) = 1−
c∑

k=1

p(k|i)2

Consider the following data. We have two features, x1 and x2. Our label is
y.

x1 x2 y
1 0 0
1 1 0
1 2 1
2 2 1
3 0 1
3 1 1
3 2 1

Let’s graph this data. Let the = 0 and ◦ = 1.

−1 1 2 3 4

−1

1

2

3

4

We want to draw a vertical or horizontal line that best separates the white
dots from the black dots (ie has the greatest information gain). Since we are
restricted to the coordinates of data points, a human will look at the graph and
choose:

5

−1 1 2 3 4

−1

1

2

3

4

Since we are classifying things based on whether they are less than the
threshold (x < 2), the point in the middle goes with the right side.

The decision tree that goes with this is:

x1 < 2

Y es

0 0 1

No

1 1 1 1

We can calculate the information gain.

IG(Dp, f) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

Nleft = 3

Nright = 4

Np = 7

Now we need the impurities.

I(i) = 1−
c∑

k=1

p(k|i)2

For the parent, we calculate the impurity of the entire dataset, which is:

I(Dp) = 1−
(

2

7

)2

−
(

5

7

)2

= 1− 4

49
− 25

49
=

49− 4− 25

49
=

20

49

And for the children:

6

I(Dleft) = 1−
(

2

3

)2

−
(

1

3

)2

= 1− 4

9
− 1

9
=

4

9

I(Dright) = 1−
(

4

4

)2

−
(

0

4

)2

= 1− 1 = 0

Note that the most pure data I(i) = 0 is all one type.
Finally, we get the information gain:

IG(Dp, f) = I(Dp)− Nleft

Np
I(Dleft)−

Nright

Np
I(Dright)

IG(Dp, f) =
20

49
− 3

7
∗ 4

9
− 4

7
∗0 =

20

49
− 12

63
=

1

7
∗
(

20

7
− 12

9

)
=

1

7
∗
(

180

63
− 84

63

)
IG(Dp, f) =

1

7
∗ 96

63
=

96

441

5 Data Structure

Let’s go back to the example from Section 2.1.

x1 x2 y
1 0 0
1 1 0
1 2 1
2 2 1
3 0 1
3 1 1
3 2 1

How will we represent this data in our code? It’s simple! We’ll use a list of
lists, with each column a feature.

[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

Alternatively, you can make the labels their own list. Our sample I/O code

has it this way:

7

Features =

[
1, 0
][

1, 1
][

1, 2
][

2, 2
][

3, 0
][

3, 1
][

3, 2
]

Labels =

0
0
1
1
1
1
1

To find the best information gain, we loop through each of the features
(columns), and each of the thresholds, splitting the matrix and calculating the
information gain. For example, in the previous example, we split on x1 < 2, so
our left child matrix would be:

[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

]

and the right child matrix:

[
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

6 Summary

To ensure complete understanding and summarize the topics we’ve covered, lets
loop through all the features and each of the possible thresholds, splitting the
matrix for each one.

8

x1 < 1

Y es No

0 0 1 1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft = []

Dright =

[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

x1 < 2

Y es

0 0 1

No

1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =

[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

]

Dright =

[
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

x1 < 3

Y es

0 0 1 1

No

1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =

[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

]

Dright =

[
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

9

x2 < 0

Y es No

0 0 1 1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft = []

Dright =

[
1, 0, 0

][
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 0, 1

][
3, 1, 1

][
3, 2, 1

]

x2 < 1

Y es

0 1

No

0 1 1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =

[[
1, 0, 0

][
3, 0, 1

]]

Dright =

[
1, 1, 0

][
1, 2, 1

][
2, 2, 1

][
3, 1, 1

][
3, 2, 1

]

x2 < 2

Y es

0 1 0 1

No

1 1 1

−1 1 2 3 4

−1

1

2

3

4

Dleft =

[
1, 0, 0

][
3, 0, 1

][
1, 1, 0

][
3, 1, 1

]

Dright =

[
1, 2, 1

][
2, 2, 1

][
3, 2, 1

]

10

7 The Full Tree

Let’s build an entire decision tree. First, consider the following data.

x1 x2 y
0 0 0
1 0 0
1 1 0
0 1 0
1 3 1
0 3 1
2 2 1
4 1 1
3 1 1
3 2 1

We graph it and calculate that x1 < 2 gives us the greatest information gain.

I(Dp) = 1−
(

4

10

)2

−
(

6

10

)2

= 1− 16

100
− 36

100
=

100− 52

100
=

48

100
=

12

25

I(Dleft) = 1−
(

4

6

)2

−
(

2

6

)2

= 1− 16

36
− 4

36
=

16

36
=

4

9

I(Dright) = 1−
(

4

4

)2

−
(

0

4

)2

= 1− 1 = 0

IG(Dp, f) =
12

25
− 6

10
∗ 4

9
− 4

10
∗ 0 =

12

25
− 4

15
=

36

75
− 20

75
=

16

75

−1 1 2 3 4

−1

1

2

3

4

The dataset is split:

11

Dleft =

[
0, 0, 0

][
1, 0, 0

][
1, 1, 0

][
0, 1, 0

][
0, 3, 1

][
1, 3, 1

]

Dright =

[
2, 2, 1

][
3, 1, 1

][
3, 2, 1

][
4, 1, 1

]

Now we make our next decision. We start with the left child, and it is obvious
that x2 < 3 generates the greatest information gain. (Again, our thresholds are
restricted to coordinates in our dataset).

−1 1 2 3 4

−1

1

2

3

4

The data is now split

Dleft =

[
0, 0, 0

][
1, 0, 0

][
1, 1, 0

][
0, 1, 0

]

Dright =

[[
0, 3, 1

][
1, 3, 1

]]
We can now calculate the information gain. We know the impurity of the parent
dataset, which was the impurity of the left child on the last split.

I(Dp) =
4

9

Now, we calculate the children impurities to find our information gain:

I(Dleft) = 0

12

I(Dright) = 0

IG(Dp, f) =
4

9
− 4

6
∗ 0− 2

6
∗ 0 =

4

9

All our data has been classified correctly, so the decision tree is done. We
will leave it as an exercise to the reader to draw the decision tree.

8 Code

Here’s how we recommend you structure your decision tree code for the com-
petition. It should be noted: do not split recursively until all data is pure. You
will overfit the testing data. Overfitting means that we train a model that mem-
orizes the training data, rather than finding the generalized patterns embedded.
When you overfit your data, the training accuracy will be high, but the testing
accuracy will be low. Instead, set a baseline for your information gain. If the
maximum information gain is less than, say, 0.1, then stop the recursion and
make it a leaf of the tree. Play with this baseline to see how your training and
testing accuracy change. Remember: your goal is the greatest testing accuracy.

def calculateImpurity(matrix):

#do calculations

return impurity

def splitmatrix(matrix, feature, threshold):

#split matrix into leftchild, rightchild

return leftchild, rightchild

def informationGain(parent, leftchild, rightchild):

#do calculations

return infoGain

def bestsplit(parent, depth):

for each feature in parent:

for each threshold in feature:

lchild, rchild = splitmatrix(parent, feature, threshold)

igain = informationGain(parent, lchild, rchild)

#if igain is the greatest:

save the leftchild, rightchild, feature, threshold

#print this node (feature, threshold) of the decision tree

hint: use depth to indent

#recur on leftchild

#recur on rightchild

13

