
Real World Machine Learning

Kevin Fu∗

October 2019

1 Introduction

We previously noticed that with soft-margins, SVMs can handle error; with
kernels, SVMs can deal with non-linearly separable data; and with one-vs-rest
(OVR) or one-vs-one (OVO), we can create multi-class SVMs. In this lecture,
we’ll introduce some useful packages to code an SVM, and give hints on the
SVM competition.

2 Setup

The first step to tackling a machine learning problem is getting a sense of the
data. For 2D data, graphing packages like matplotlib or seaborn can be useful.
For the SVM competition, with its eleven features, using Microsoft Excel or
Apple’s Numbers to view the input .csv is good for figuring out which features
are useful and which are not. However, once we start using scikit-learn for
the SVM itself, we’ll need to get this .csv in a form Python can work with. The
Data I/O code from the Decision Trees competition is good, but using pandas

with a Jupyter notebook is better.

2.1 Conda

To use pandas and Jupyter notebooks, we’ll need to install Conda. Conda is
an open-source Python package manager designed for data scientists. If you’ve
pip installed a package before, you’ve used a package manager like Conda. (If
you haven’t, look into running Python from the command line: Terminal on
Mac/Linux, Command Prompt on Windows.) Data scientists generally choose
Conda over pip because it groups package installations into separate environ-
ments, which prevents conflicts between packages intended for separate projects.

One way to install and use Conda is through Anaconda, which bundles the
package manager with 150+ data science packages for convenience. However,
this makes the installation time longer, for packages that we may not need. A

∗Presented by Aarav Khanna (February 2021)

1

better way to install Conda is with Miniconda, which will just install Conda
and everything it needs to run, letting you decide what packages to install.

Google “install miniconda” and follow the instructions for your operating
system. Once you create and activate a conda environment:

conda create --name [environment-name]

conda activate [environment-name]

installing packages is the same as with pip.

conda install [package-name]

After installing numpy and pandas, reading in a .csv file in Python becomes
this easy:

import numpy as np

import pandas as pd

filename = "yogurt_nutrition_facts.csv"

nutr_facts = pd.read_csv(filename, index_col=0)

2.2 Jupyter Notebooks

It’d be useful to see the nutr_facts variable in the example above, which is a
Pandas DataFrame object. Printing it out to a normal terminal gives us this:

which is hard to read. But with a Jupyter notebook, we get a nice table,
like we would out of Excel:

To create a Jupyter notebook, first install the jupyter package with Conda,
then, in the command line, type:

jupyter notebook

This will open the notebook in your default browser. Create a new Python3
notebook by clicking the New dropdown in the top right corner, and copy-paste
the same code as before into a block, then append the line

nutr_facts

2

to see the table above.
If you’ve ever run Python in interactive mode (by typing python3 into the

command line), seeing a printout after nutr_facts will feel familiar. That’s
because Jupyter notebooks run “cells” of Python code in interactive mode.
Breaking code into cells is useful: you can run cells individually or call variables
from cells above the current one. Also, Google Colab notebooks are Jupyter
notebooks connected to Google’s servers, so learning how to use local Jupyter
notebooks will help with that; see our Google Colab lecture for more info.

Aside from making .csv files easier to read in, pandas also allows us to
convert data to numpy arrays easily. pandas DataFrames can be converted to
2D numpy arrays:

my_arr = data_frame.to_numpy()

and any subsequent numpy operations, like np.delete() or np.reshape()

can be performed on the array.

3 Scikit-Learn

To train our SVM on the data, we’ll need to use scikit-learn (sklearn), a
collection of data science tools and models.

3.1 Preprocessing

In the nutr_facts DataFrame, we’ll want to separate the last column, contain-
ing the output classes, from the input feature data. We’ll also want to make
it a numeric binary classification problem so scikit-learn’s SVM models can
handle it. Formatting data to work with a given model is called preprocessing.
In code, that’s:

X = np.delete(nutr_facts.to_numpy(), -1, 1)

y = np.where(nutr_facts[’greek_or_not’]==’not’,0,1)

3

where X is the input features and y is the output classes. By printing these
numpy arrays, you’ll see they have the same data as the pandas DataFrame,
only without the qualitative labels.

Without a Kaggle competition to do split the data into training and testing
data, and do the evaluation for us, we’d have to do both manually. Scikit-learn
(installed as sklearn) makes splitting data easy:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = \

train_test_split(X, y, test_size = 0.20)

test_size here is the proportion of our overall data that will go to the
testing set; in this case, 0.20 = 20% testing data. After a model is run, sklearn
also makes evaluating it with a confusion matrix simple.

However, since we primarily do machine learning competitions from Kaggle
for this club, we have access to pre-split training and testing data and an evalu-
ator. Thus, we read in the testing .csv data and preprocess it the same way we
processed the training data. Your code for the SVM competition will be similar
to this:

train.csv and test.csv already read and preprocessed

X_train = train_df.to_numpy().astype(float)

y_train = train_df[’Survived’].astype(float).to_numpy()

X_test = test_df.to_numpy().astype(float)

Here, the training and testing DataFrames are converted to numpy arrays,
and the data in them is converted to floats. We’ll get a final array, y_pred, from
our SVM model.

At last, with sklearn and our properly formatted input/output data, the
multivariable calculus behind an SVM can be reduced to three lines of code:

from sklearn import svm

model = svm.SVC()

model.fit(X_train, y_train)

The SVC in svm.SVC() stands for Support Vector Classifier, to differenti-
ate it from sklearn’s Support Vector Regression model (svm.SVR()). Getting
y_pred is even simpler:

y_pred = model.predict(X_test)

3.2 Hyperparameter Tuning

Of course, running a raw SVM on any data is unlikely to succeed. For example,
the 0.63838 score under “Kevin Fu” on the SVM competition is a raw SVM
on minimally preprocessed data. The SVC model in sklearn has dozens of

4

hyperparameters to tune; for the SVM competition, the important ones to focus
on are C, kernel, and gamma. Refer to the docs and last week’s lecture for what
each one means.

Tuning hyperparameters can feel like guess-and-check, because it largely is.
In fact, the process of “guess-and-check” is built into sklearn.model_selection
as RandomSearchCV(). A more systematic approach would be GridSearchCV(),
but like OvO vs OvR, in real-world testing both give similar results. Implement
either if you want to avoid manually guessing at hyperparameters.

4 Results

Now that we have a working SVM model and y_pred, all that’s left is to submit
and send our output .csv to Kaggle.

4.1 Writing to .csv

Again, pandas makes this simple. After using np.reshape() and np.concatenate()

to merge our y_pred array with a corresponding id row, writing to a .csv file
is as simple as creating an output DataFrame and saving it:

out_df = pd.DataFrame(columns=[’id’, ’solution’], \

data=out_data).astype(int)

outfile = "solution.csv"

out_df.to_csv(outfile, index=False)

In the last line, index=False tells pandas to avoid numbering the rows,
since our id column does that already.

4.2 Real-World Evaluation

Without a Kaggle competition’s automated evaluation, evaluating an SVM be-
comes harder. After splitting your data into training and testing data with
sklearn, as referenced at the top of subsection 3.1 Preprocessing, a confusion
matrix is a simple way to gauge a model, once you know how to read one. A
confusion matrix for a binary classification problem looks like this:

True positives and true negatives are cases where our model is correct: where
the predicted class lines up with the actual class. In a confusion matrix, these
are the bottom-right and top-left squares, respectively. A false positive (top-
right) is when the predicted value is yes but the actual value is no, and a false
negative (bottom-left) is the opposite. In each case, the second word (“positive”
vs “negative”) corresponds to the model’s prediction, and the first word (“true”
vs “false”) tells us if the model’s prediction is correct or not.

Because the importance of each of these cases varies depending on the
problem—for example, false negatives in disease detection are extremely problematic—
we have different evaluation metrics based on these four cases. The most com-
mon two are precision and recall. Recall is calculated as follows (true positives
are abbreviated as TP, false negatives are abbreviated as FN):

5

TP

TP + FN
=

TP

actual yes
(1)

Recall is also known as True Positive Rate, because it’s simply the ratio of
correctly predicted positives to actual positives, as shown in the formula.

The precision equation is:

TP

TP + FP
=

TP

predicted yes
(2)

Recall and precision tend to be inversely correlated; higher precision leads
to lower recall, and vice-versa. Recall can be thought of as a model’s ability
to identify the positive cases, which is important when the positive cases are
extremely infrequent, like in disease identification. Precision is how accurate
the model is when it finds positive cases, differentiating it from pure accuracy,
which is simply:

TP + TN

total
(3)

Finally, to weigh the trade-off between recall and precision, we can find a
model’s f1-score, which is the harmonic mean of recall and precision:

2 ∗ precision ∗ recall
precision + recall

(4)

which we use instead of an arithmetic mean of recall and precision because
it punishes extremely low values for either. For example, with a precision of 0.0
and a recall of 1.0, the arithmetic mean would be 0.5, but the f1-score is 0.0.

With sklearn, we can get all this information easily. This code:

from sklearn.metrics import classification_report, confusion_matrix

print(confusion_matrix(y_test,y_pred))

print(classification_report(y_test,y_pred))

6

will show the confusion matrix as a 2x2 numpy array and a weighted sum-
mary of the precision, recall, and f1-score.

5 References

5.1 Images

• Confusion matrix: https://www.dataschool.io/simple-guide-to-confusion-
matrix-terminology/

• All other images: https://github.com/tjmachinelearning/yogurt-svm

5.2 Documentation

• Conda: https://docs.conda.io/projects/conda/en/latest/index.html

• numpy: https://docs.scipy.org/doc/numpy/reference/

• pandas: https://pandas.pydata.org/pandas-docs/stable/

• scikit-learn: https://scikit-learn.org/stable/modules/svm.html

5.3 Other

Grid Search vs Random Search:

• https://scikit-learn.org/stable/auto_examples/model_selection/

plot_randomized_search.html

• https://blog.usejournal.com/a-comparison-of-grid-search-and-randomized-

search-using-scikit-learn-29823179bc85

Confusion Matrix:

• https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/

• https://towardsdatascience.com/beyond-accuracy-precision-and-

recall-3da06bea9f6c

General sklearn:

• https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-

scikit-learn/

7

