
A Review of RNNs and Attention

Tarushii Goel∗

March 2022

1 RNNs

“Humans don’t start their thinking from scratch every second. As you read
this essay, you understand each word based on your understanding of previous
words. You don’t throw everything away and start thinking from scratch again.
Your thoughts have persistence.

Traditional neural networks can’t do this, and it seems like a major shortcom-
ing. For example, imagine you want to classify what kind of event is happening
at every point in a movie. It’s unclear how a traditional neural network could
use its reasoning about previous events in the film to inform later ones.

Recurrent neural networks address this issue. They are networks with loops
in them, allowing information to persist.” (Christopher Olah’s explanation)

Figure 1: A standard RNN

What makes an RNN different from standard networks is that the previous
hidden state from the last input is passed into the function for the current state.
For example, with the sentence ”I like dogs”, the word ”I” is passed through
the network and results in some output like normal. The previous hidden state
that was computed for ”I” is passed into the function to calculate the hidden
state for ”like”, and so forth.

∗Based on Vinay’s RNN lecture

1



1.1 LSTMs

Our original RNN cell looked like this:

Figure 2: Original RNN Cell

Notice how only the input and the hidden state are controlling the outputs
of the cell.

Unfortunately, in practice, RNNs are susceptible to the vanishing gradient
and the exploding gradient problem. Essentially, through backpropagation, ear-
lier layers either face an exponentially small gradient or large gradient. This
means that in sequences of data, at the current time t, the RNN is likely to
forget relevant data from long before.

An LSTM, or Long-short term memory network, seeks to solve these prob-
lems. There are four main parts to an LSTM: the cell state (ct), the input gate
(it), the forget gate (ft), and the output gate (ot).

Figure 3: Overview of an LSTM Cell

This cell looks a lot more complicated than the vanilla RNN we saw before.
However, these added aspects improve the RNN by a lot so lets walk through
them.

2



Figure 4: LSTM Cell State

The cell state serves as the main flow across the cells. The gates modify the
information that is passed through the cell state. Note, the X denotes element-
wise multiplication (also known as the Hadamard product) and the + denotes
element-wise addition.

Figure 5: LSTM Forget Gate

The forget gate chooses whether or not the information should be added to
the cell state. This gate is a sigmoid layer that takes in ht−1 and xt. This forget
gate output will be multiplied into the cell state, so if the forget gate has values
of 0, then it would forget the information and if it has values of 1, then it would
remember all the information.

Figure 6: LSTM Input Gate

Next is the input gate. This passes the input from the ht−1 and xt values

3



and combines it with the C̃t, or new candidate values. C̃t takes in the inputs
and looks to find new values that are possible. Notice that this is a hyperbolic
tan function, which outputs values from -1 to 1. This allows the layer to give
negative correlations to a value as well.

Figure 7: LSTM Combining Values

These values are all combined and put into the cell state which passes the
values through.

Figure 8: LSTM Output Gate

Lastly, there is the output gate. This is just another sigmoid layer, which
is combined with the tanh of the cell state to give the ht final value that gets
passed into the next cell.

All these gates would be trained through backpropagation as they’re just
layers in a network. However, with all the layers, LSTMs can be computationally
expensive, which leads us into our next section.

4



1.2 GRUs

Figure 9: GRU Cell

GRUs, or Gated recurrent units, combine the forget and input gate into one
”update” gate. Additionally, it merges the cell state and the hidden state, and
adds other changes for efficiency. Fewer layers to train means a faster model.

GRUs are a relatively new concept as well, being discovered by Cho, et al.
in 2014. LSTMs, on the other hand, have been around since 1997, from the
discovery by Hochreiter and Schmidhuber.

2 Attention

The main motivation for attention was Neural Machine Translation (NMT),
which as you’ll recall, can be performed through seq2seq networks composed of
an encoder and decoder. The issue (again!) is long-term memory: when the
sentences get increasingly large the chance that all of them can be effectively
encoded into a low-dimensional vector becomes increasingly small. Attention
directly links the hidden states from the encoder to the decoder input (these
are kind of like information ”highways”, allowing the words to travel directly
instead of through a roundabout route involving multiple hidden states).

Say, we have a source sequence x of length n and want to output a target
sequence y of length m.

x = [x1, x2, . . . , xn]

y = [y1, y2, . . . , ym]
(1)

If we use a bi-directional RNN as our decoder, at every point, we will have
two hidden states for each word. One is the hidden state outputted right after
the forward RNN takes the ith word as input, which includes information mostly
about the ith word but also about all preceding words, and the other is the
hidden state right after the backwards RNN takes the ith word as input, which
includes information mostly about the ith word but also about all following
words. These two hidden states are appended to get the hidden state for that
word.

5



hi = [
−→
h⊤

i ;
←−
h⊤

i ]
⊤, i = 1, . . . , n (2)

Now, we want to connect these hidden states directly to the decoder input.
We will accomplish this by appending a context vector ct, a sum of hidden states
of the encoder, weighted by alignment scores, to the decoder hidden state. The
new hidden state is st = f(st−1, yt−1, ct) for the output word at position t,
t = 1, . . . ,m:

ct =

n∑
i=1

αt,ihi

αt,i = align(yt, xi)

=
exp(score(st−1,hi))∑n

i′=1 exp(score(st−1,hi′))
.

(3)

2.1 Self-Attention

Self-attention is practically regular attention, but instead of the context vectors
being calculated from the hidden states of one RNN and being the input to
another RNN, the context vectors are calculated from the hidden states of a
single RNN, for that RNN.

Figure 10: Self-Attention

6



2.2 Multi-Head Attention

Symbol Meaning
d The model size / hidden state dimension
h The number of heads in multi-head atten-

tion layer.
L The segment length of input sequence.
X ∈ RL×d The input sequence where each element has

been mapped into an embedding vector of
shape d, same as the model size.

Wk ∈ Rd×dk The key weight matrix.
Wq ∈ Rd×dk The query weight matrix.
Wv ∈ Rd×dv The value weight matrix. Often we have

d k = d v = d.

Wk
i ,W

q
i ∈ Rd×dk/h;Wv

i ∈ Rd×dv/h The weight matrices per head.
Wo ∈ Rdv×d The output weight matrix.
Q = XWq ∈ RL×dk The query embedding inputs.
K = XWk ∈ RL×dk The key embedding inputs.
V = XWv ∈ RL×dv The value embedding inputs.
A ∈ RL×L The self-attention matrix between a input

sequence of lenght L and itself. A =
softmax(QK⊤/

√
dk).

aij ∈ A The scalar attention score between query qi

and key kj

MultiHeadAttention(Xq,Xk,Xv) = [head1; . . . ; headh]W
o

where headi = Attention(XqW
q
i ,XkW

k
i ,XvW

v
i )

Figure 11: The multi-head scaled dot-product attention mechanism

7



3 Sources

• Lillian Weng’s Transformer Blog Post

• Lillian Weng’s Attention Blog Post

• Saahith’s Attention Lecture

• Vinay’s RNN Lecture

• Christopher Olah’s LSTM Walkthrough

8

https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/#attention-and-self-attention
https://lilianweng.github.io/posts/2018-06-24-attention/
https://tjmachinelearning.com/lectures/2021/advanced/self-attention/Self_Attention.pdf
https://tjmachinelearning.com/lectures/1920/rnn/RNNs.pdf
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

	RNNs
	LSTMs
	GRUs

	Attention
	Self-Attention
	Multi-Head Attention

	Sources

