Deep Belief Networks TJML

Eric Feng, Anish Susarla
April 2022

1 Introduction

Deep Belief Networks and Deep networks (DN) in general lead the
field in their ability to solve increasingly complex problems that
shallow networks like MLPs can’t solve effectively or efficiently.
Deep Networks work on the idea that having more hidden lay-
ers increase the complexity (number of features) of the network
without introducing unmanageable training times. However, DNs
aren’t flawless and often suffer from the vanishing gradient prob-
lem making it difficult to apply standard training algorithms, like
gradient descent, to them. The strategies we’ll be discussing today
are Deep Belief Networks, Boltzmann Machines, and Restrictive
Boltzmann Machines. Deep Belief Networks, Restrictive Boltz-
mann Machines (RBMs), and Boltzmann Machines (BMs), as well
as most of the processes discussed in this lecture were developed
by Dr. Geoffrey E. Hinton in his pursuits of creating a generative

Figure 1: Dr. Geoffrey it . O ;
E. Hinton probabilistic graphical model to solve the vanishing gradient prob-

lem. Deep Belief Networks build off of several ideas presented in
previous lectures, and as such, most of this lecture will be dedicated to reviewing various
concepts related to Deep Belief networks.

2 Probabilistic Graphical Modeling (PGM)

This is not to be confused with Probabilistic Generative Mod-
eling (also PGM) which is essentially the same thing. PGMs
are made up of nodes, which in most instances are random
variables, and edges, which represent relationships between
these variables. RBMs and BMs are types of PGMs and were
influenced by Hidden Markov Models (HMM) and Bayesian
Networks (BN)! of the late 20th century. HMMs and BNs rep-
resent two structures of PGMs that are relevant to Boltzmann
machines in that they model complex problems by evaluating
a problem’s conditional independences, and making assump-
tions about their relationships. This is aptly termed condi-

1If you’re interested in learning more about Bayesian Networks, check out my lecture from last year on
Bayesian Networks



tional independence assumptions (CIA). This idea of condi-

tional independence, in which a variable is independent of at least one variable, but not
necessarily independent of all variables, is distinctly different from independence which says
that a variable is unaffected by all other variables. Conditional independence is central to
both Bayesian Networks and Boltzmann machines, and because of their cult-like following
and divine influence, they became known as belief-networks.

3 Boltzmann Machines

Boltzmann Machines were named after the Boltzmann Distribution
or Gibbs Distribution, which was created in the 19th century by
some guy named Boltzmann I presume, who used the distribution
to anticipate a quantum state in thermodynamics based on entropy
and temperature. Now that’s pretty irrelevant, but it’s an exam-
ple of how statistical mechanics has some cross-disciplinary appli-
cations. Now Boltzmann machines represent a major divergence
from Neural Networks and has some very interesting properties.

1. No output nodes!? This is shocking, since the basis of
machine learning in neural networks is comparing outputs to
the original and making a change to weights and biases.

2. Fully connected. Now when I say fully connected, you
probably think of the FC layer in CNNs, but no. I mean
FULLY connected, as in there are connections between
nodes on the same layer and nodes on every layer as seen on the right. This complete
interconnectivity allows each node to share information among eachother irregardless
of whether it’s a visible node or hidden one. This makes it a Deep Generative Model.
You might recall that this sharing of information is similar to how RNNs work, just
on a much more holistic scale.

Boltzmann machines work as a stochastic model that updates its weights and biases until
it reaches a Boltzmann distribution equilibrium. From there, the probability of a state is
then computed based solely on the the energy of the state vector in relation to the energies
of all other possible state vectors. I'm not going to get into the weeds of how Boltzmann
machines learn, not only because I don’t understand the math, although that is a big rea-
son, but also because it plays a minimal role in understanding DBNs. We’re much more
interested in it’s much simpler progeny: Restrictive Boltzmann Machines.



4 Restrictive Boltzmann Machines

Hidden units

Visible units

7
<
N\

Figure 2: Restrictive Boltzmann
Machine

Restrictive Boltzmann Machines are a variant on Boltz-
mann Machines, which as previously described, contain
connections between nodes on the same layer: between
input layers and between nodes on the same hidden layer.
This results in inefficient learning and especially slow
rates with multiple layers of feature detectors. In RBMs,
however, we remedy this problem by restricting the pos-
sible edges to only nodes on different layers, essentially
creating a bipartite, acyclic, probabilistic graphical model
(PGM). Another difference between RBMs and BMs, is
that RBMs consist of only two layers: visible and hidden
units. Figure 2 shows the structure of an RBM. If you
thought that this looked like a MLP or NN, you would
be right. The structure of a RBM is identical to the first
two layers of a NN, but the key difference is how it trains.
Since RBMs are still PGM, forward propogation doesn’t
follow the simple rules of MLPs: f(x) = A(w*x+b), in-
stead forward and backwards propogation take the form
of Contrastive Divergence. Now, your first concern should

be how can a two layer network learn anything, and for complex models, it can’t. In or-
der to create more complex models, RBMs can simply be stacked on top of eachother,
with the hidden units of one RBM feeding into the visible units of the next one. This is the
basis of a Deep Belief Network, with the model capturing the ”belief” of a complex problem.

Since RBMs are based on Boltzmann Machines, they are also stochastic, binary, and energy-
based. To extract information from a pre-trained RBM, one can derive the probability
function of a neuron from the Energy function of the energy-based model.

visible neurons: v
hidden neurons: h
biases: b, ¢

Energy(v,h) = —b'v — ’h — h'Wov

1

P(hj =1Jv) =

1+ exp(—c; — Y, viwij)

= logsig(c; + Z V;W;5)

4.1 Contrastive Divergence

Restrictive Boltzmann Machines are trained using contrastive divergence (CD). Also pro-
posed by Hinton in 2002, contrastive divergence makes training RBM networks very efficient.
Contrastive Divergence is replacement for the standard forward and backward propagating
NN that we're used to. Contrastive Divergence, similar to forward-backward propogation,
takes place in two steps, a positive step, in which hidden units are updated, and a negative
step, in which the visible layers are updated. Unlike conventional neural networks or MLPs,
contrastive divergence doesn’t move linearly, but rather between the two layers of the RBM:



visible and hidden. Instead of forward propagating based on A(x*w+b), probabilistic gen-
erative modeling generally use Gibbs Sampling, which essentially takes into account the
probability distributions between nodes and returns a binary sampling for the new values.

RBM
H1 1 12y -
" -1 w12_,y . 4
P(H1| V) witl/wet S w2 ~
‘ ‘;:_..;./_ \ ~ e W Lo o -\
" VA T Q Y W \ 4 . 4
Vi V2 Vi Vi V2 V3

4.2 Equations for Training RBMs

Positive Phase
P(hy = 1[v) = o(b; + S5y wijvs)
Negative Phase
P(v; = 1) = 0 (Ai + 37, wijhy)
Updating Weights
w;j = w;j + 1 x (Positive(E;;) — Negative(E;;))

4.3 Pseudocode

input: x
visible units, hidden units: v, h
weight between v; and hj: w;;
learning rate: €
biases of x; and h;: b;,c;
V] < T
for all hidden units j do
compute probability P(hi; = 1|vy)
gibbs sampling hi; € 0,1 from P(hq;|vq)
end for
for all visible units 7 do
compute probability P(ve; = 1]hq)
gibbs sample vg; € 0,1 from P(vg;|h1)
end for
for all hidden units j do
compute probability P(hg; = 1|vg)
: end for
for all weight values i,j do
Wi j — Wy j + e(vlihlj — 'UQZ'P(th = 1|112))
: end for
b+ b+ e(vive)
c4—c+ 6(]’L1 — P(hzj = 1‘1}2))

e e e
NPT Ro



10.
11.
12.
13.
14.

15.

Sources

. https://github.com/albertbup/deep-belief-network

https://medium.com/swlh/what-are-rbms-deep-belief-networks-and-why-are-they-important-
to-deep-learning-491c7de8937a

http://scholarpedia.org/article/Deep_belief_networks
http://scholarpedia.org/article/Boltzmann_machine
http://scholarpedia.org/article/Deep_belief_networks
https://www.mff.cuni.cz/veda/konference/wds/proc/pdf12/WDS12_117_i1_Kukacka.pdf

https://www.analyticsvidhya.com/blog/2022 /03 /an-overview-of-deep-belief-network-dbn-
in-deep-learning/

https://machinelearningmastery.com/introduction-to-bayesian-belief-networks/
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Deep_belief_network
https://en.wikipedia.org/wiki/Restricted _Boltzmann_machine
https://deepai.org/machine-learning-glossary-and-terms/contrastive-divergence
https://en.wikipedia.org/wiki/Gibbs_sampling
https://www.youtube.com/watch?v=WKet0_mEBXg

https://www.youtube.com/watch?v=CzoNuCNeCCO0



