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1 ResNets

1.1 Motivation

For many years, the trend in machine learning was to add more layers, since larger networks can capture more
complexity (case in point, VGGs). However, one big issue that arises with this approach is the vanishing
gradient. Since gradients are calculated by multplying partial derivatives, if the partial derivatives are
small, as is often the case in practice, the gradients become exponentially smaller, or vanish, as you back
propogate to the initial layers of the network. This results in initial layers recieving very small updates.
For example, the derivatives of the hyperbolic tangent function are in the range (0,1), so backpropogation
through this function will always cause the gradient to decrease. The initial layers train so slowly that the
benefit of having them quickly declines. In fact, the initial layers can start to hurt the accuracy of the model.
To solve these issues, researchers invented residual connections, which are ”skip” connections that fuction
as information highways for passing gradient information and prevent a vanishing gradient.

*This lecture is adapted from Justin Zhang’s 2017 lecture on ResNets and Inception
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1.2 Residual Blocks

As you can see, ResNet allows for much greater depth than VGG allows. The image above is the smallest
conventional size of ResNet. Typical applications use ResNet-50 at least and high-end ones use ResNet-152.
The sheer power of these structures has allowed for 92.9 percent accuracy on ImageNet and the usage of
training on fancy GPUs with lots of data.

To understand the underlying idea behind resiudual connections, let’s zoom into one block of a ResNet. The
2 layers shown in the diagram above receive an input, x, from the previous layer in the model. We will
define the function that we are trying to learn as H(x). In a standard network, we would train this block
to learn H(x). However, since this is a residual block, we are instead going to train the model to learn
F (x) := H(x) − x. F (x) is the residual. The main hypothesis of Residual Networks (one that has been
shown to be true in practice) is that F (x) is an easier function to learn than H(x).

There are a number of observations you should note about shortcut connections:

1. They do not add extra parameters, and thus no extra computational complexity.

2. Since nonlinearities are universal approximators of functions, clearly the residual unit is also a universal
approximator.

3. The degradation problem suggests that the solvers might have difficulties in approximating identity
mappings with multiple nonlinear layers. However, with the residual learning formulation, in situations
where identity mappings are optimal (or close to optimal), the solvers may simply drive the weights
of the multiple nonlinear layers toward zero to approach identity mappings. This means that we can
reasonably expect that a deeper residual network will never be worse that its shallower counterpart.

1.3 Residual Blocks, More Formally

The residual block protrayed above is defined as:

y = F (x;Wi) + x
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where x is the input into the block and y is the output of the block. F is the function applied by the 2
stacked non-linear layers, F = W2σ(W1x) (biases are ommited for notational convenience), and σ is the
ReLU activation. A second non-linearity is applied after the addition, σ(y). F (x) may vary, depending on
the number layers you have, and may produce an output of different dimensions than x. In this case, we
can perform a linear projection Ws on x: y = F (x;Wi) + Wsx. This is sufficient to solve the degradation
problem. Other methods (zero-padding, for instance) can also work, but the empirical difference between
these methods is very small.

2 Inception

2.1 Overview

Another major improvement made in recent years in image classification is the use of multiple parallel layers
in each residual node. Each of these sets of layers, as seen in the image above, contains different filter
sizes, allowing for a varying sizes of features to be extracted, the removing the need to optimize filter size
as another hyperparameter. These innovations have brought about Inception-ResNet structures capable of
producing results more accurate than humans on image classification.

2.2 Specifics

The idea of Inception layers was based off the “we need to go deeper” internet meme. This automatically
gives it more legitimacy over general neural networks, which were modeled after the brain, and reinforcement
learning, which was modeled after operant conditioning.

“Deeper,” in this context, refers to two things: a new level of network organization and literal deeper
networks.

To understand the Inception architecture, consider a fundamental trade-off of convolutional networks:
the most straightforward way to improve performance is to increase network size. This comes with two
drawbacks: overfitting (due to more parameters) and a large drop in performance. Sparsely connected
architectures could theoretically solve this as well as better approximate biological processes and single out
discrimanatory features, but technical details prevent modern computers from efficiently doing numerical
computations with sparse matrices.

The Inception architecture seeks to use varying filter sizes (allowing the model to choose the optimal one,
or even combine them) while trying to mimic the result of a sparse structure.
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This revised architecture uses dimensionality reduction to make the inception module more efficient and
to keep representations of data sparse (i.e. dense convolutions are used with sparser data). Specifically, max
pooling (for obvious reasons) and 1x1 convolutions are used.

These 1x1 convolutions do the following:

1. Make the network deeper

2. Reduce dimensions (the number of feature maps)

3. Add more non-linearities (ReLU after the 1x1 convolutions)

Generally, Inception modules are only used in the beginning of a convolutional network, for memory
efficiency.

3 Xception

Xception is like Inception in most regards, but differs in one integral aspect: it uses depthwise seperable
convolutions instead of standard convolutions.

3.1 Our Standard Convolution
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3.2 The Depthwise Convolution

In a depthwise convoution, rather than apply a 3d kernel on a 3d input, the 3d input is split, depthwise,
into 2d inputs, and a 2d kernel is applied on each of the 2d inputs. The 2d outputs for each input are
concatenated at the end.

3.3 The Depthwise Separable Convolution

The depthwise separable convolution extends the concept of the depthwise convolution by adding one extra
step. After the outputs are concatenated, a n∗1∗1 standard convolution is applied to them (n is the number
of input channels). This step combines the outputs depthwise.

The key advantage of the depthwise seperable convolution is that it requires fewer parameters than the
standard convolution. To transform a 3 ∗ 8 ∗ 8 input to a n ∗ 8 ∗ 8 output, a depthwise seperable convolution
world require 27 + 3 ∗ n parameters. 27 parameters are used in the depthwise convolution (three 1 ∗ 3 ∗ 3
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kernels), and n 3 ∗ 1 ∗ 1 kernels are used to apply the last step, with each 3 ∗ 1 ∗ 1 kernel generating one of
the output channels. On the other hand, a standard convolution requires 27 ∗ n parameters, a much larger
number when n > 1. Note that we are using zero padding in these examples.

4 Sources

� Justin Zhang’s Lecture

� Vanishing Gradient Wikipedia Article

� ResNet Paper

� Andrew Ng’s Video on Inception

� ResNet Code
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https://tjmachinelearning.com/lectures/1718/deepconv/deepconv.pdf
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://arxiv.org/pdf/1512.03385v1.pdf
https://www.coursera.org/lecture/convolutional-neural-networks/inception-network-motivation-5WIZm
https://github.com/pytorch/vision/blob/7c077f6a986f05383bcb86b535aedb5a63dd5c4b/torchvision/models/resnet.py#L118
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