
Fast.ai and PyTorch

Sachin Satish Kumar

April 27, 2022

1 Introduction

Fast.ai is a machine learning repository that gives professionals elevated platforms for efficiently and
simply delivering next-generation results in traditional neural network contexts, as well as minimal
parameters which can be perfectly matched to generate new strategies. However, we will be discussing
the library/framework in which Fast.ai operates on.

In October 2016, Facebook released PyTorch, a computer vision system. It’s highly customizable, and
it’s built on the Torch repository. PyTorch is a neural network based application framework that offers
a lot of versatility and power. Fast.ai is an added component of PyTorch that adds a wide selection of
features to the existing algorithm, such as visual analytics approaches, increased. ways to upload and
break information, and so on.

Today, we will be going over different aspects of the Pytorch library and what it has to offer!
Furthermore, the syntax and installation of Pytorch and Fast.ai, as well as discussing comparisons
between other libraries such as Keras and Tensorflow!

2 Pytorch

2.1 Overview and Syntax

PyTorch allows artificial intelligence to become simpler for Python users and includes helpful applica-
tions such as OOP assistance and adaptive computational diagrams. It goes beyond just acting as a
normal Python program, as it can use simple Python syntax but implement different machine learning
algorithms from its library.

Now onto syntax, there are a variety of syntax. For this lecture today, I will be going over the
essential syntax needed plus additional visual aids presented. Such syntax will include tensors, neural
networks, and computational graphs.

2.1.1 Tensors

Tensors in PyTorch are multifaceted array parameters that form the basis for all conventional learning
in this library. Tensors, unlike normal nominal models, can be programmed to use either CPU or GPU
to accelerate functions.

There are 5 data types used to initialize tensors in PyTorch listed below:

CPU tensor Data Type

FloatTensor 32-bit float
DoubleTensor 64-bit float

HalfTensor 16-bit float
IntTensor 32-bit int

LongTensor 64-bit int

1



Figure 1: Displays initialization of variables

Figure 2: Explains functions that may be used in PyTorch

Figure 3: Moving tensors to be handled by the GPU

Figure 4: Displaying matrix capabilities

2



2.2 Neural Networks

Because of its outstanding prediction model, such as image analysis and computational models,PyTorch
is often used to construct the common convolutional neural networks (CNN). The torch.nn framework
in PyTorch is used to construct neural networks, and it includes a series of nodes to describe every
layer of the CNN. Each function receives input tensors and computes output tensors, which will then
be combined to form the system. Loss functions are also specified in the torch.nn bundle, that we use
to develop algorithms for training CNNs. The following are the steps in creating a neural network:

• Structure: Construct neural network frameworks, configure constraints, and assign biases.

• Forward Propagation: Utilizing variables, determine the total efficiency. By comparing the
expected and real results, you can calculate the deviation from the accuracy.

• Back-propagation: Upon identifying the fault, calculate the mistake function’s derivative in
view with their neural network’s variables. We will change some feature weights using reverse
propagation.

• Recursive Automation: Use optimization techniques that change criteria by regression using
gradient descent to minimize accuracy loss.

Figure 5: Graph of a simple neural network

2.3 Computational Graphs

It’s crucial to experiment with computational diagrams in terms of understanding PyTorch and neural
networks specifically CNNs. These plots display basically a concise summary of neural nets with a
series of pro that show why the input affects the outcome of the network.

Figure 6: Computational diagram of neural network shown above

3



2.4 Optimizers

Optimizers assist in reducing loss by iteratively updating biases within the model. This leads to mak-
ing changes to your model despite attempting to recreate it entirely.

The torch.optim kit contains all PyTorch optimization techniques, each of which is configured
to be helpful in a particular scenario. By forwarding a collection of parameters to the torch.optim
function, you can construct an arbitrary application developers. PyTorch has a large number of
optimization methods to pick from, so you’ll also often find one which suit your requirements.

Figure 7: Observing the initialization of optimizers

2.5 PyTorch and Competing Libraries

There are some libraries out there that are head-to-head with the new and upcoming library, PyTorch.
A few of these libraries is termed Keras and Tensorflow, but the library we will be discussing is
Keras due to its high-level API . Keras is a pleasant, efficient application for addressing computer
vision issues, with an emphasis on advanced machine learning. It offers basic simplifications and basic
structure for designing and exporting high-iteration-rate deep learning algorithms.

Figure 8: Analyzing differences of machine learning libraries

2.6 Applications of PyTorch

PyTorch is a machine learning platform that is accessible and is used to incorporate network archi-
tectures such as RNN, CNN, LSTM, as well as other elevated protocols. Furthermore, it is used by

4



academics, businesses, and ML and AI groups.

Figure 9: Presenting top companies that utilize PyTorch

Figure 10: Illustration of a map of what states use PyTorch frequently

2.7 Installation process

2.7.1 Windows

For the installation process:
1. Install Anaconda
2. Open Anaconda Prompt (NOT Anaconda Navigator)
3. Type in the prompt: conda install pytorch -c pytorch
4. Type in the prompt: pip install torchvision
5. Finally, Add environment to ipykernel

2.7.2 Mac

1. Open Command Prompt for Mac
2. Dependent on your Python edition, choose one of the following two commands to install PyTorch

using pip:
- Python 3.x: pip3 install torch torchvision

5



Figure 11: Example code to test installation successsion

Figure 12: Output of example code above

3 References

fastai-A Layered API for Deep Learning. fastai-A Layered API for Deep Learning ·. (n.d.). https://www.fast.ai/2020/02/13/fastai-
A-Layered-API-for-Deep-Learning/.

Kathuria, A. (2021, April 9). PyTorch Basics: Understanding Autograd and Computation Graphs.
Paperspace Blog. https://blog.paperspace.com/pytorch-101-understanding-graphs-and-automatic-differentiation/.

Learn the Basics¶. Learn the Basics - PyTorch Tutorials 1.8.1+cu102 documentation.(n.d.).https://pytorch.org/tutorials/beginner/basics/intro.html.

PyTorch tutorial: a quick guide for new learners. Educative. (n.d.). https://www.educative.io/blog/pytorch-
tutorial.

6


	Introduction
	Pytorch
	Overview and Syntax
	Tensors

	Neural Networks
	Computational Graphs
	Optimizers
	PyTorch and Competing Libraries
	Applications of PyTorch
	Installation process
	Windows
	Mac


	References

