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1 Introduction

Figure 1: Dr. Andrey
N. Tikhonov

In machine learning, overfitting refers to when a model learns the
detail and noise in the training data to the extent where model per-
formance will be degraded when evaluated on testing data. The
goal for an ideal machine learning algorithm is for it to learn the
significant features from a training dataset so that it can effec-
tively evaluate data on data it has not seen before. This is where
overfitting techniques come into picture. While there are numer-
ous techniques to reduce overfitting, such as k-fold cross-validation
and data augmentation, one of the most common techniques to
reduce overfitting is regularization. One of the earliest forms of
regularization was Tikhonov regularization, developed by Soviet
mathematician Dr. Andrey N. Tikhonov. Tikhonov regularization
was meant to solve the issue of multicollinearity, which is when
one independent variable is highly correlated with one or more
independent variables. This is a problem because it undermines
the statistical significance of an independent variable. Tikhonov
regularization, now known as ridge regression, detailed below.

2 Bias vs. Variance

To fully understand regularization, we must also understand the difference between bias and
variance (in a machine learning sense). Bias refers to the difference between the average
prediction of the model and the ground truth/correct value that the model should have
returned if the model were to have 100% accuracy. An ideal machine learning model would
reduce either the absolute value or the squared value of the bias (to account for if the
predicted value is less than the ground truth value), since we want the difference between
the model’s predicted value and the ground truth to be as small as possible (so long as it
can be generalized to the testing data as well). Variance refers to the variability of model
prediction for a given data point or value - in other words, how much the model can adjust
given the dataset. A low bias usually corresponds with a high variance, and vice versa, and
if we think about it, this makes intuitive sense! As mentioned previously, a low bias would
correspond to the model being able to predict values in a dataset relatively well, which
means that the model can adjust given the dataset (since not every value in the dataset is
going to be the same), which corresponds to a high variance.
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2.1 Residual Sum of Squares

One fundamental part of regularization is the residual sum of
squares (RSS). If you haven’t heard of this term before, you
can think of it as basically the same thing as mean squared
error (MSE). The only difference is that the residual sum of
squares is, as the name suggests, the sum of squared errors,
whereas the mean squared error is the average of the squared
errors.

2.2 Bias v. Variance Tradeoff

While it may seem that we should always strive for the highest
variance as possible, this can actually increase bias, and there-
fore, model loss (such as mean squared error). However, a fun-
damental part of machine learning is understanding the bias
versus variance tradeoff, and that we need to find an appropri-
ate value for our algorithm (where λ can represent algorithm
complexity). As can be seen, while having a high variance
often correlates with a lower , and lower bias, as can be seen,
the relative mean squared error is high. This is because total
error can usually be thought of as the bias2 + variance + some
other irreducible error. Finding the point of lowest error is one
of the purposes of regularization! Specifically, we’ll build off
of RSS and go into how to find an appropriate λ value.

3 Ridge vs. Lasso Regression

3.1 Ridge Regression

Ridge regression builds off the residual sum of squares by including a shrinkage quantity.
It would make intuitive sense for the goal to reduce/minimize this function, since we would
want to reduce the RSS/MSE. Ridge regression is usually used when you have more param-
eters than samples. In the equation below, λ can be used to represent algorithm complexity.
In addition to the RSS, as mentioned previously, a shrinkage quantity is added, which
multiplies λ by the squared weight of each individual feature.
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In short, ridge regression can be seen as almost identical to linear regression,
except that if we introduce a small bias, we can get better long term predictions
for the model that should perform generally well on data that it has not seen
before as well. Additionally, ridge regression should be used when there are
many significant predictor variables, since it will keep all the predictors in the
model.
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3.2 Lasso Regression

Lasso regression is almost identical to Ridge regression, except that when calculating the
penalty term, the absolute values of the weights are taken, versus the squared values of the
weights, like that is done in Ridge regression.
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In short, lasso regression is extremely similar to ridge regression, instead the
absolute values of the weights are taken. Additionally, lasso regression should
be used when there are a small number of significant predictor variables, as
lasso regression will attempt to shrink non-important coefficients to zero and
remove them from the model.

4 Elastic-Net Regression

As can be inferred from the previous section, one fundamental difference between Lasso and
Ridge regression is how it excludes variables. Lasso regression can exclude non-significant
parameters/features by settings its slope to 0. However, in Ridge regression, we can only
shrink the slope asymptotically close to 0. Now, why is this important? This is where
Elastic-Net Regression comes into picture, which is basically just combining Ridge and
Lasso regression. This form of regularization groups and shrinks the parameters, and either
leaves them in the equation, or removes them all at once. This is accomplished by having
two separate λ values - one for the Ridge regression penalty and another for the Lasso
regression penalty.
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5 Sources

1. https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a

2. https://en.wikipedia.org/wiki/Tikhonov regularization

3. https://medium.com/@mackenziemitchell6/multicollinearity-6efc5902702

4. https://www.statology.org/when-to-use-ridge-lasso-regression/

5. https://towardsdatascience.com/understanding-the-bias-variance-tradeoff-165e6942b229

6. https://link.springer.com/chapter/10.1007/978-0-585-25657-3 37

7. https://www.bmc.com/blogs/bias-variance-machine-learning/

8. https://github.com/RichmondAlake/tensorflow 2 tutorials

9. https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-
techniques/

3


	Introduction
	Bias vs. Variance
	Residual Sum of Squares
	Bias v. Variance Tradeoff

	Ridge vs. Lasso Regression
	Ridge Regression
	Lasso Regression

	Elastic-Net Regression
	Sources

